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0.1 Introduction

Professor: Adebisi Agboola.

Office Hours: Tuesday: 11:15-12:30, Thursday: 11:15-12:30 (225A), Wednesday 10:00-
12:00 (225B).

Textbooks: Algebraic Number Theory by Frohlich and Taylor, Algebraic Number The-
ory by Lang, Number Fields by Marcus, Introduction to Cyclotomic Fields by Wash-
ington.

Course Outline: We shall aim to cover the following topics. Additional topics will be
covered if time permits.

Basic commutative algebra: Noetherian properties, integrality, ring of integers.
More commutative algebra: Dedekind domains, unique factorization of ideals, local-
ization.

Norms, traces, and discriminants.

Decomposition of prime ideals in an extension field.

Class numbers and units. Finiteness of the class number: Minkowski bounds. Dirich-
let’s unit theorem. Explicit calculation of units.

Decomposition of prime ideals revisited: the decomposition group and the inertia
group associated to a prime ideal. A nice proof of quadratic reciprocity.

Basic Theory of completions and local fields.

The Dedekind zeta function and the analytic class number formula.

Dirichlet characters; Dirichlet L-functions; primes in arithmetic progressions; the ex-
plicit class number formula for cyclotomic fields.

Artin L-functions: definitions and basic properties.

Miscellaneous topics, e.g. Stickelberger’s theorem, p-adic L-functions, Stark’s conjec-
tures.

Additional books that may be of use are:

Galois Theory — Lang’s Algebra

Number Theory — Hecke’s Theory of Algebraic Numbers, Borevich and Shafarevich’s
Number Theory, and Serre’s A Course in Arithmetic

Commutative Algebra — Atiyah and MacDonald’s Introduction to Commutative Alge-
bra, Zariski and Samuel’s Commutative Algebra, and Eisenbud’s Commutative Algebra
with a View Toward Algebraic Geometry.



Chapter 1

Basic Commutative Algebra

Example. In Z[\/—6], we do not have unique factorization of elements, e.g. 6 =
—v/—64/—6 = 2 - 3. We shall later establish unique factorization into prime ideals.

We will then have 6Z[v/—6] = (v/—6,2)%(v/—6,3)2.

Definition 1.1 Let M be an R-module, where R is a commutative ring with a 1. We
say that M is a noetherian R-module if every R-submodule is finitely generated over
R.

Example.
1. M is finite.

2. R is a field and M is a finite-dimensional vector space.

Definition 1.2 We say that the ring R is noetherian iff R is a noetherian R-module,
i.e. iff all ideals are finitely generated over R.

Example. A PID is a noetherian ring.

Proposition 1.3 (See 220ABC) The following are equivalent:

1. R is a noetherian ring.



2. Every ascending chain of R-ideals stabilizes.

3. Every nonempty set of R-ideals has a maximal element.

Proposition 1.4 Suppose that the following sequence of R-modules is exact:
0—-M-—-N—P—0.

Then N is noetherian iff M and P are noetherian. (Since then the exact sequence is
0—-M-—N—M/N—DO0.)

Proposition 1.5 If M is finitely generated as an R-module, and if R is a noetherian
ring, then M is a noetherian R-module.

“Proof.” @} R — M since M is finitely generated. Now apply Proposition 1.4.

Proposition 1.6 Suppose that S and R are rings with S D R. Suppose that R is a
noetherian ring and S is finitely generated as an R-module. Then S is a noetherian
ring.

Proof. R[X,...,X,] = S, where R[X7,..., X,,] is noetherian by the Hilbert Basis
Theorem.

Recall that an R-module M is said to be free of rank n if there exists an R-module
isomorphism M ~ @/ R. Then rank n is uniquely determined because R is commu-
tative.

Proposition 1.7 Let M be a finitely generated R-module, and let R be a PID (or
Euclidean domain). Then we have an isomorphism M ~ T(M)® a free R-module of
finite rank, where T'(M) ~ @, R/a;R, with a; | a;41.

Definition 1.8 (Abstract version) Let R and S be rings with R C S. We say that
an element x € S is integral over R iff R[x] is finitely generated as an R-module.
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Definition 1.9 (Historical version) Let x € S O R. We say that z is integral over R
iff = satisfies some monic polynomial m(T") € R[T].

These definitions are equivalent.

1. Let x € S be a root of a monic polynomial m(7T) € R[T]. We wish to

show that R[z| is finitely generated over R. We claim that (1,x,...,2™)g =
(1,x,...,2" g for any m > n — 1, where n = deg(m(T)). Suppose that
m(T) =T"+a, ,T" ' +---+ag. We know that 2" = —a,,_12" ' — -+ —ag, so
™ = —a, 12" — . —agz™ ™. We have shown therefore that (1, z, ... ,xm>R =
(1,2,...,2" 1. Tt follows by induction that R[x] = (1,x,..., 2" ).

2. Suppose now that R[x] is spanned by fi(x),..., fu.(x), where f1,..., f, are poly-
nomials over R. Set N = max;<;<,[deg(fi)]. Then 2Vt =>""  a,fi(z), where
a; € R. Hence z is a root of the monic polynomial TN — S~ q, fi(T).

Examples. i = v/—1 is integral over Z because it satisfies T2 +1. Also, /5 is integral
over Z since it satisfies 7% = 5.

Definition 1.10 Let S and R be rings with S O R. We say that S is integral over
R if every element of S is integral over R.

Proposition 1.11 Let x € S O R. Then x is integral over R iff there is a subring @)
of S so that R[z] C @ C S and (@ is finitely generated as an R-module.

Proof. For the forward direction, if x is integral, take @ = R[z]. For the reverse
direction, suppose we are given @ as above, with @ = (y1,...,yn)r (as an R-module).
Then

vy =Y ayy;,  a; €R. (f)
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Let A =x1I, — (a;), d = det(A), and A* the adjoint matrix of A. Then AA* = dI,.
(1) implies that yAA* =0, where y = (y1 -+ ). Hence y;d = 0 for each i. Now
1 € @Q; write 1 = . bjy;, where b; € R. Then d =}, bjy; = >, b;(dy;) = 0. Hence
x satisfies the monic polynomial d = det(z1, — (a;;)) = 0.

Proposition 1.12 Suppose that zq,...,z, € S O R. Suppose that, for each i, z; is
integral over R[xy,...,x;—1]. Then R[xy,...,x,] is finitely generated as an R-module.

Proof. The proof proceeds via induction on n. The case n = 1 is obvious from
the definition of integrality. Now we perform the inductive step. Suppose that

B = R[zy,...,x;_1] is finitely generated as an R-module. Now we are given that
Blx;] =}, Beg. By our inductive hypothesis, B = >, Rd;. Hence Blz;] =
> Rdjcx, and so the elements {cyd;} span Blzy,...,x,] over R. The result now

follows by induction.

Corollary 1.13 Let z,y € S O R, with x and y integral over R. Then zy and = +y
are integral over R.

Proof. We are given that R[] is finitely generated over R, asis R[y]. Then R[z,y] is
finitely generated over R[y|, and so R[z,y] is finitely generated over R. Consider the
element zy € S. We have R[zy] C R[z,y], so in Proposition 1.11, take Q = R|x, y].
We deduce that zy is integral over R. Similarly for x £+ y.

Remark 1.14 If R is a noetherian ring, this can all be sped up. For concreteness,
take R = Z. Suppose « and 3 are integral over Z. Then Z[«a| and Z[] are finitely gen-
erated as Z-modules, and so Z[a, (] is a finitely generated Z-module. Hence Z[a, []
is a noetherian Z-module. Now Z[af5] C Z[«, 5]. Thus Z|a, 5] is finitely generated
over Z (since Z|c, (] is noetherian). Hence af3 is integral over Z.

Definition 1.15 Suppose that R and S are rings with R C S. We know that
{z € S : x is integral over R} is a ring. We call this ring the integral closure of R

in S.



Definition 1.16 Suppose that R is an integral domain with field of fractions K. We
say that R is integrally closed if it coincides with its integral closure in K.

Remark. Given R, any r € R is integral over R since it satisfies the monic polyno-
mial 7" — r.

Examples 1.17
1. Let R be a PID with field of fractions K. Then R is integrally closed. (Exercise.)

2. If R is a field, then z is integral over R if and only if = is algebraic over R.

Definition 1.18 An (algebraic) number field is a finite extension of Q.

Definition 1.19 Let K be a field. The ring of algebraic integers of K is the
integral closure of Z in K. We denote this by 0.

Examples.
1. The ring Z is the ring of integers of Q.
2. The ring Z[i] is the ring of integers of Q(¢) since i is integral over Z.

3. If w? =1, w # 1, then Z[w] is the ring of integers of Q(w) = Q(v/—3).

Examples.
Algebraic Integral
Im Yes Yes
1/7 Yes No
T No No
1/ V2 Yes No
% Yes Yes (Exercise!)



Gauf’s Lemma. Let f(T') € Z[T]. If f factors in Q[T], then it factors in Z[T].

Proof. Without loss of generality, we may assume that f is primitive, i.e. that
the coefficients of f have no common prime factor. Let f = gh be a nontrivial
factorization in Q[T]. Choose a,b € Q such that ag := ¢’ is a primitive Z-polynomial
and similarly for bh = h/. Then we have abf = ¢'h'. Let ab = ¢/d, with (¢,d) = 1.
We claim that ab = +1. For we have c¢f = dg'h’. If ab # £1, then either

1. there is a prime p with p | ¢, and so we get 0 = dg’h’ € F,[T}], but d, g, and b’
are all nonzero, which is a contradiction, or

2. there is a prime p with p | d. Then é¢f = 0 € F,[T]. But f # 0 since f is
primitive and ¢ # 0 since (¢, d) = 1, which is a contradiction.

Theorem 1.20 Let d be a squarefree integer with d # 1. Then the ring of integers
of Q(V/d) is

Z[Vd] ifd#1 (mod 4),

Z[(1++d)/2] ifd=1 (mod 4).

Proof. Suppose that a = a + bv/d, with a,b € Q and b # 0. Let @ = a — bv/d. We
shall determine whether « is integral over Z. Now « is an integral over Z if and only
if o satisfies a monic polynomial over Z. (Note: « satisfies a minimal polynomial
m(7T). Gau’s Lemma tells us that f = mg, and so m(T") has coefficients in Z.) Now
m(T) = (T — a)(T — a) = T? — 2aT + o* — db?, and this must be a polynomial over
Z. So we must have a € 1/2Z and a* — db* € Z (so b € 1/27).

Consider the case d = 2 (mod 4). Suppose that a € 1/2Z. Then a*> = 1/4 (mod )Z.
Either b € Z, in which case b*> = 0 (mod Z), in which case b*> = 0 (mod Z), which is
a contradiction since a? — db* € Z or b € 1/27 \ Z, in which case b* = 1/4 (mod Z),
whence db? = 1/2 (mod Z), since d = 2 (mod 4), which is a contradiction. Hence we
must have a € Z, and so b*d € Z. If b= 1/2 (mod Z), then b*d = 1/2 (mod Z) since
d =2 (mod 4), which is a contradiction. So a,b € Z.



We leave the case of d =3 (mod 4) as an exercise.

Finally, consider the case d = 1 (mod 4). Either a,b € Z or a,b € 1/2Z \ Z (from
the condition a® — b*d € Z). Examine the condition a = 1/2 (mod Z) and b = 1/2
(mod Z). Then a* = 1/4 (mod Z) and b* = 1/4 (mod Z). Therefore b*d = 1/4
(mod Z) since d = 1 (mod 4). Hence a* — db* € Z, as required.

Terminology. If d > 0, then Q(+/d) is called a real quadratic field. If d < 0, then
Q(v/d) is an imaginary quadratic field.

1.1 Interlude on Galois Theory

Let G be a group and K a field. A character of GG is a homomorphism y : G — K*.
The trivial character is the homomorphism taking the constant value 1. Functions
fi: G — K for 1 <i <n are said to be linearly independent if whenever there is
a relation aq f1 + -+ + a,f, = 0 with a; € K, then a; =0 for 1 <i < n.

Theorem 1.21 (Artin’s Theorem on linear independence of characters) Let G be a
group and K a field. Suppose that xi, ..., x, are distinct characters of G in K. Then
these characters are linearly independent over K.

Proof. Suppose we have a relation

CL1X1+~'-—|—CLan:0 (T)

with a; € K not all zero and n as small as possible. Then n > 2, and no a; = 0.
Since x; and Yo are distinct, there is some h € G such that xi(h) # x2(h). Then for
each g € G, we have a;x1(gh) + -+ + a,xn(gh) = 0, and so

ale(h)Xl + - aan(h>Xn =0. (i)

Dividing (1) by x1(h) and subtracting from (}) gives

(e

_a2>X2+...:0’
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which is a contradiction since this is a relation of shorter length with a nonzero coef-
ficient.

Corollary 1.22 Let L/K be a finite, normal extension of fields, and let oy,..., 0,
be distinct K-automorphisms of L. Then o4, ..., 0, are linearly independent over L.

Proof. View oy, ...,0, are homomorphisms L* — L*, and apply Artin’s Theorem.

Proposition 1.23 Let L/K be a finite Galois extension of fields (not necessarily of
characteristic 0) of degree n. Suppose that zi,...,xz, is a basis of L over K. Let
o1, ...,0, be the distinct K-automorphisms of L. Then det(z;”) # 0.

Proof. Suppose that det(z;’) = 0. Then there exist ai,...,a,, not all zero, so that
> a;r;” =0for 1 <i<n. Hence >_;a;t7 =0 for every £ € L (i.e. for any K-linear
combination of the {a;}). This contradicts Corollary 1.22.

Let L/K be a finite separable extension of fields. Let n = [L : K], and let K®P
be a separable closure of K (so if char(K) = 0, then K*P = K®#). Let {0;} be
the distinct field embeddings o; : L — K*P with o; | K = identity. For = € L,
Trr/k(z) =) 1 2% € K and Npk(z) = [[1, 27 € K.

Alternatively, view multiplication by x on L as a K-linear automorphism of L. Call
this endomorphism ¢,, so ¢, (y) = xy. Pick a basis {y;}!, of L/K, and let ¢, have
matrix (a;;) with respect to this basis.

Claim. Tr(yp,) = Trp/k(z), and det(p,) = Np/k ().

Proof. We have zy; =) ; iy Apply an embedding o}, to this equation:
x”’“y;”“ = Z a”y;k
J
So we have a matrix equality (y;*) diag(z7*) = (a;;)(y;*). Now Proposition 1.23 tells
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us that det(y;"*) # 0. So the trace and determinant (and characteristic polynomials
of diag(x?*y;*) and (aj;)) coincide. This establishes the claim.

Exercise. Let L/K be a finite separable extension of degree n. Then Trp x :
L x L — K given by (x,y) — Trp/k(zy) is a nondegenerate symmetric bilinear form
on the K-vector space L. Hence we have an isomorphism L — Hom(L, K) given by
x — [y — Trp/k(zy)]. So if {x;};-, is a basis of L/K, then we can find a dual basis
{yi}i, of L/K, i.e. a basis such that Trp/x(2y;) = 04
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Chapter 2

More Commutative Algebra

Definition 2.1 We say that an ideal m of R is maximal if, given an ideal a such
that m C a C R, then either a = R or a = m.

(Maximal ideals are prime.)

Definition 2.2 An integral domain R is said to be a Dedekind domain if
1. R is a noetherian ring.
2. R is integrally closed.

3. All nonzero prime ideals of R are maximal.

Example/Exercise. Every PID is necessarily a Dedekind domain.
We shall prove:

Theorem 2.3 Every nonzero ideal of a Dedekind domain R may be written uniquely
as a product of prime (maximal) ideals.
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Let R be an integral domain with field of fractions K.

Definition 2.4 We call any finitely generated R-module M in K a fractional R-
ideal. If M C R, we say that M is an integral R-ideal.

Theorem 2.5 Let R be a Dedekind domain with field of fractions K. Let L/K be
a finite separable extension. Then the integral closure S of R in L is a Dedekind
domain.

(Remark. We won't prove this in full generality; we shall assume that R = Z.)

Corollary 2.6 Any ring of integers is a Dedekind domain.

Corollary 2.7 Any ring of integers has unique factorization of ideals.

Proof of Theorem 2.5

1. We first show that S is integrally closed. Let € L be integral over S. Then x
is the root of some polynomial

T+ 5T 4. +5,=0, s, €8 (%)

We are required to prove that x is integral over R. Now R[sq,...,s,] is a
finitely generated R-module (since all the s; are integral over R). From (x),
it follows that R[x,si,...,s,] is finitely generated over Rl[si,...,s,]. Hence
Rlz, s1,...,8,] is finitely generated over R, and so Proposition 1.11 implies
that x is integral over R.

2. We now show that S is a noetherian ring. Let z,...,x, be a K-basis of L.
We claim that without loss of generality, we may take x; € S for all :. For we
know (after clearing denominators) that for example x; is a root of a polynomial
agT™ + -+ + a, = 0, where a; € R for each i. Multiply through by af ! to get
(aoT)"+a1(agT)" 1+ +a,al~" = 0. So agz; is integral over R. Now let {y;}
be a dual basis of L, so Tr(z;y;) = d;;. Suppose that a € S with a = ) a,y,,
say. Then ax; = a,y,x;. Applying Try/k to both sides of this equation gives
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Tr(ax;) = a; - 1, and so a; € R since ax; € S. So S C Y Ry, = @ Ry;. Ris
a Dedekind ring, so R is noetherian, so S is a noetherian R-module, so S is a
finitely generated R-module, and Proposition 1.6 tells us that S is a noetherian
ring.

Remark. Since {z;} is a basis of L, we have @, , Rx; C S, and so we in
fact have @, , Rx; € S C ;_, Ry;. Hence, if R is a PID, it follows from
Proposition 1.10 that S is a free R-module of rank n = [L : K.

3. Finally we show that all nonzero prime ideals of S are maximal. Take R = Z,
so S = o0g. Then S is free over Z of rank n, i.e. S = @ | Zw;. Let p be a
nonzero prime ideal of S. We know that

WZ = pZ  or
0.

Let x € p\ {0}. Then 0 # N g(x) € pNZ, and so we must have p N Z = pZ.
So we have pS C p C S, and so there is a surjection S/pS — S/p. Now
S/pS ~ @ Fpw;, which is finite of cardinality p”. Also S/p is an integral
domain since p is prime. Thus S/p is a finite integral domain, i.e. a field. Thus
p is a maximal ideal.

Lemma 2.8 Let R be a Dedekind domain. Then every nonzero R-ideal contains
some product of nonzero primes.

Proof. Suppose that the assertion is false. Let . denote the set of nonzero R-
ideals not containing a nonzero product of primes. By hypothesis, .% is nonempty.
By Proposition 1.3, . contains a maximal element, b, say. Now b is definitely
not a prime ideal, and so there exist elements z,y € b with zy € b. We have
(z,b) D p1---p, and (y,b) D q1---qm (p; and q; are primes). Multiplying gives
b D (z,b)(y,b) DPp1---Pnls- - qm, which is a contradiction.

Theorem 2.9 Let R be a Dedekind domain and m a maximal R-ideal. Then there
exists a fractional ideal m~! in R so that mm~! = R.
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Proof. Set m" = {x € R | 2m C R}. We wish to show that mm’ = R. Now m’
is clearly an R-module. It is also finitely generated, for pick p € m\ {0}. Then
pum’ C R, and pum’ >~ m’ as an R-module. Since R is noetherian, it follows that m’ is
finitely generated. Next, we observe that R C m’ implies that m C mm’. So we have
m C mm’ C R. Hence, since m is maximal, we have either m = mm’ or mm’ = R. We
show that the former possibility does not hold. Suppose on the contrary that

Pick x € m"\ {0} and y € m\ {0}. The above equalities imply that R[z]y C R[z]m C
m. Since R is a noetherian ring, it follows that R[z]y is finitely generated as an
R-module. So R[z] is finitely generated as an R-module, i.e. x is integral over R.
Since R is integrally closed, it follows that € R, whence we deduce that m’ = R. To
complete the proof, we show that m" = R is impossible. Choose a € m \ {0}. Then
Lemma 2.8 implies that

m2 Ra2pr--py

(where the p;’s are nonzero primes). Choose n so that n is minimal for our given
a. Now m must contain one of the p;’s, say p; without loss of generality. Since p;
is maximal (as R is a Dedekind domain), we have m = p;. Hence Ra O mb, where
b =ps---p,. By minimality of n, Ra # b. Pick some b € b, b ¢ Ra, i.e. b/a & R.
Then

1 1
émg —bm C —Ra C R.
a a a

So % e m’, and g ¢ R, and this contradicts m’ = R. This proves the result.

Proof of Theorem 2.3 We first show existence. Let ® be the family of proper
nonzero integral R-ideals which are not factorable as a product of primes. Suppose
that ® # @. Then Proposition 1.3 implies that ® has a maximal element, a, say.
Then a C R and a is not a prime (or else we would have a trivial factorization). So
we have a C m C R, where m is a maximal ideal. So we have a Cam™! Cmm~! =R
(remember R C m~!!). Either a C am™! in which case, by maximality, am™! has
a prime factorization, and so a has a prime factorization (m is maximal and hence
prime!), which is a contradiction, or

a=am  =-.--=am " =-.--. ()

Pick @ € a\ {0} and m € m~'\ {0}. Then (%) implies that aR[m| C a. Since R
is noetherian, we have that R[m] is finitely generated over R, and so m is integral
over R, and so m € R, and so m~' = R, which is a contradiction (c.f. the proof of
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Theorem 2.9). It therefore follows that & = @.

We now show uniqueness. Suppose P --- P, = q1 - - ¢, Where the p;’s and q;’s are
primes. We shall show by induction on n that the q;’s are some reordering of the p;’s.
Consider the case n = 1, i.e. p = q1---qn. By primality, p = q;, say. Multiplying
both sides by p~!, we get R = q2-+-q,. Som = 1, and p = q;. Now we do the
general case. By primality, we have p; D g, (say q1). Multiplying both sides by p;*
yields po -+ P, = g2 - gm, SO by induction we are done.

2.1 Valuations of Ideals

Let R be a Dedekind domain, and let a be a fractional R-ideal. Then a = Hp prr
where n, € Z, with almost all of the n,’s equal to zero. We write v,(a) = n, (read
as “the p-valuation of a”). Let K be the field of fractions of R, and let I be the
set of fractional R-ideals. Then Iy is a group. We have a map I — @p Z: given by

a— B, vp(a).

Definition 2.10 We call a fractional ideal a € Ix principal if a = aR for some
a € K. We denote the subgroup of principal ideals by Pk.

Definition 2.11 Let K be a number field. The class group of ox (or of K) ideals
is defined to be the quotient group I/ Pk := Ck, and |Ck| = hy, (we shall show later
that hy is finite).

Remark. og is a PID if and only if hx = 1.

Definition 2.12 We call the group of invertible elements of 0x the units of ox (or
of K!), and we denote this group by oj.
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We have a sequence

1 - o — K - Py — Ix — Cg — 0
a = aog.

Theorem 2.13 (Chinese Remainder Theorem — See 220B) Let R be a Dedekind
domain, and let a = p7* ---pp*. Then R/a ~ Hle R/pl.

Definition 2.14 Let K be an arbitrary field. A surjective map v : K — Z U {o0} is
called a valuation of K iff for every x,y € K:

l.ov(zr) =0 iffx =0
2. v(zy) = v(z) + v(y)
3. v(z +y) > inf(v(x),v(y)).
So (2) tells us that v(1) = v(—-1) =

Claim. ov(z) > v(y) implies that v(z + y) = v(y). For we have v(z + y)
inf(v(x),v(y)) = v(y). Strict inequality would imply that v(y) = v(y + = — x)
inf(v(y + x),v(x)) > v(y), which is a contradiction, and so we must have v(x + y)
v(y).

v Iv

Key Example 2.15 Let R be a Dedekind domain with field of fractions K. For
x € K*, set vp(z) = vy(xR); this defines a map v, : K* — Z. Setting v,(0) = oo
defines a map v, : K — Z U {oo}. Since we can always find an x so that x € p but
x & p?, it follows that v, is surjective.

Exercise. Check that v, satisfies the conditions of Definition 2.14.

Definition 2.16 Given a valuation v of a field K, we set 0, = {z € K : v(z) > 0}.
Then o, is a ring, called the valuation ring of v in K. Next, set P, = {z € K :
v(xz) > 0}. Then P, is a proper o0,-ideal, the valuation ideal of v in K.
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P, is a prime ideal. Suppose x,y € 0, with xy € P,. Then v(zy) = v(x) + v(y) > 0.
Thus either v(z) > 0 or v(y) > 0,i.e. z € P, or y € P,.

Proposition 2.17 o, is a PID with unique maximal ideal P,. Moreover, we have
7 = I,, via m +— P™.

Proof. First observe that x is invertible in o, iff v(x) > 0 and v(z™') > 0, i.e. if
v(xz) = 0. Hence 0,0 = 0, \ P,, and so P, is the unique maximal ideal of 0,. Next, let
a be a nonzero o0,-ideal. Choose b € a with v(b) minimal. We claim that a = bo,, for
plainly we have bo, C a. If ¢ € a, then v(b) < v(c), so v(b'¢) > 0. Thus b~ 'c € o,.
Thus ¢ = bb~'c € bo,. Hence a = bo,, as claimed. Finally, suppose that ao, = P,,
and that v(b) = n (where b is as above). Then a0, = P! = bo, = {c € K : v(c) > n}.

2.2 Localization

Suppose that R is an integral domain with field of fractions K. Let S denote a
multiplicatively closed set (not containing zero) in R. Define R¢ C K as Rg =
{¢la€Rbe S}

Example. Let R be a Dedekind domain. Suppose that p is a prime ideal in R. Then
S = R\ p is a multiplicatively closed set. In this case, we write R, = Rg from now
on. The ring R, is called the localization of R at p.

Exercise. Show that R, = o,,. Hence R, is a PID with only one maximal ideal,
namely p.

Remark. If R is a ring of integers, then in general R is not a PID. However, by the
above, each R, is a PID. This is very useful.
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Lemma 2.18 Suppose that R is a Dedekind domain. Then R/p ~ R,/pR,,.

Proof. The natural inclusion R — R,, induces a map * : R/p — R,/pR,. We now
show injectivity. We have to show that RNpR, = p. Suppose that x € RNpR,. Then
we may write x = 7r/s, where 7 € p and s € p. Hence we have xs = mr, and this
implies that 7 € p. Now we show surjectivity. Pick a/s (s € p) in R,, representing a
given class in R,/pR,. Since s € R\ p, there is some b € R so that bs = 1 (mod p).

a a

So we have ¢(bs — 1) € pR,. Hence ¢ and ab represent the same class in R,/pR,.
Thus ab + p — % + pR,, and so surjectivity is shown.

2.3 Examples of “good behavior” with respect to
localization
Proposition 2.19 Let R be an integral domain. Then

1. R is integrally closed iff R, is integrally closed for all primes p. (This is an
example of the Hasse principle.)

2. If R is a noetherian ring, then R, is a noetherian ring for all primes p.

Let M be an R-module. Define Mg := M ®p Rs. (If S = R\ p, then we write M,
for Mg.)

Proposition 2.20 Let R be an integral domain. Then
1. M =0 iff M, = 0 for all primes p.

2. M is flat iff M, is flat for all primes p. (M is said to be flat if it preserves exact
sequences under tensor products, i.e. if

0—A—-B—-C—=0

is exact, then
0AM —-BIM —-C®M —0

is also exact.)
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3.
4.

M is torsionfree iff M, is torsionfree for all primes p.

0-MLNLP-0
is an exact sequence of R-modules iff
0— M, % N, % P, -0

is exact for all primes p.
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Chapter 3

Discriminants, Norms, and Traces

Let L/K be a finite, separable extension of fields. Let n = [L : K| and K® be a sepa-
rable closure of K. Let {o;}! ; be the distinct field embeddings o; : L < K so that
0; |k=td. For x € L, define Try /x(z) = > "1 ;2% € K and Np/k(z) =[], 27 € K.

Definition 3.1 Let K be a number field. Pick a Z-basis x1,...,z, of ox (cf. the
remark after the proof of Theorem 2.5). The discriminant of o /Z with respect to
the trace form is d(K/Q) = det(Trg q(zx;)).

N.B. This is the discriminant of the quadratic module (o, Tr/q). d(K/Q) is gen-
erally referred to as the discriminant of K'!

Lemma 3.2 Let {0;} denote the distinct Q-embeddings of K into KP. We set
AL (K/Q) = det(z;’). Then A,(K/Q) is independent of the particular basis {x;} up
to sign, and d(K/Q) = Ax(K/Q)>.

Corollary 3.3 d(K/Q) is independent of the choice of basis of 0k /Z.

Proof of Lemma 3.2 Let {y;} be another Z-basis of ox. Then we have y; =
> Pijaj, where (P;) € GL,(Z). Hence y7* = >, Pjxi*. Taking determinants
yields Ay (K/Q) = det(P;;)Ax(K/Q). Since (P;;) is a change-of-basis matrix, we
have det(P;;) = £1. Hence A4(K/Q) depends upon {z;} only up to sign. Next,
observe that Y, a7’ 2 = Trgg(zizy). Hence if we write A = (277), then we have
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AA" = (Trgg(x;xy)). Taking determinants and using the fact that det(A) = det(A")
gives A, (K/Q)? = d(K/Q).

Corollary 3.4 d(K/Q) # 0.

Proof. This follows from the fact that A,(K/Q) = det(x]’) # 0 (see Proposition
1.23).

Example 3.5 Suppose that d # 1 (mod 4) and that d is squarefree. Set K = Q(V/d).
By Theorem 1.20, we have ox = Z + ZV/d, i.e. 1 and v/d are a Z-basis of ox. So

d(K/Q) = 'g 20d‘ _ 4d.

Exercise. Suppose that d =1 (mod 4). Show that d(K/Q) = d.

Notation. Suppose that K is a number field with [K : Q] = n. Let zy,...,x, be
any set of elements of K. (This will only be of interest when {z;} are a Q-basis of
K.) Then D(zy,...,x,) := det(Tr(z;z;)) and A(zy,...,z,) = det(x]’). Then, as in
the proof of Lemma 3.1, we have D(z1,...,2,) = A2y, ..., 7,)%

Interpretation. Set A = > Zx;. As before, D(z1,...,x,) only depends upon the
lattice (module) A. So we can write Dy = D(z1,...,2,). In particular, d(K/Q) =
D,,.. Suppose that A C 0. We shall show later that Dy = d(K/Q)[ox : A

[Aside. A useful tool in the evaluation of discriminants is the Vandermonde determi-
nant: deti<; jen(2}) = £[[;o; (2 — ;). To evaluate A(1,z,...,2""), set x; = 27 ]

Uses of discriminants.

1. Suppose we have pox = [[{_, p7*. Then e; = 1 for all 7 for almost all primes p.
If some e¢; > 1, then we say that p is ramified, and we call e¢; the ramification
index.
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Dedekind’s criterion. p ramifies iff p | d(K/Q).

Example. Let K = Q(i) and ox = Z[i]. 2Z[i] = (1—1)?, and so 2 ramifies in Q(z)/Q.
d(K/Q) = 4. There is also an analogue of ramification for Riemann surfaces. . .

2. Calculating rings of integers. Suppose that [K : Q] = n. Usually we can
find algebraic integers 1, ..., z, that are Q-linearly independent.

Question. Is {z;} a basis over Z for o?

Lemma 3.6 Set A =Y Zx; and m = (o : A). Then D(z1,...,x,) = d(K/Q)m?.

Proof. Let {y;} be a Z-basis of or. Then x; = 3°7 | Pj;y;, and so 7" = > Pi;y7*.
Taking discriminants yields D(x) = A2 = d(K/Q)det(P;;)?. By the theory of ele-
mentary divisors (see 220B), we can find matrices A, B € GL,(Z) such that

d 0 0
P=Alo . o|B
0 0 d,
N - y

Now x = Py, so A7'x = DBy. Set X' = A~!'x and y’ = By; then X' = Dy’. Now A
is spanned over Z by {z.}. Thus A is spanned over Z by {d;y;}. But ok is spanned by
{y;}, and so we have ox /A ~ @ Zy;/ @ Zd;y;. Thus (o : A) = £ ][, d; = £ det(P).
Hence D(x) = Ax? = d(K/Q)(of : A)%

Now Lemma 3.6 gives us a method for computing rings of integers.

Proposition 3.7 Notation as in Lemma 3.6. Suppose that A # ox. Then there
exists an algebraic integer of the form %(Alxl + 4 Apzy), where 0 < A < p—1,
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\; € Z, and p is a prime such that p* | D,.

Proof. Since A # ok, we have (05 : A) > 1. Hence there is a prime p with p | (0 : A)
and an element u € ox \ A such that u; = pu € A. By Lemma 3.6, p* | Dy. Also
u= %ul = %(Alxl + -+ \yxy,) since {x;} forms a Z-basis of A.

Corollary 3.8 If D, is squarefree, then A = 0.

Here is the basic idea:
1. Start with an initial guess A for ox, A =" | Zx;.
2. Compute Dy.

3. For each prime p so that p? | Dy, test all numbers of the form ]19()\1331 + o+
AnZn), 0 < N < p—1, to determine whether they are algebraic integers.

4. If any new integers arise, enlarge A to A’ by adding in the new integer. (Then
DA/ - plDA.)

Example. Find the ring of integers and discriminant of Q(#)/Q, where 6> —6—1 = 0.
3 0 2

By Gaufi’s Lemma, X?®— X —1 is irreducible over Q. Calculate D(1,0,6?) = [0 2 3|.
2 3 2

To work out entries, we compute Tr(f) = 0 (from the equation X3 — X — 1), and
Tr(03) = Tr(0) +Tr(1) = 3. To compute Tr(#?), we need to go back to first principles:
find a matrix representing ¢y (i.e. the “multiplication by #2” map on Q(6)): we have
a basis, namely {1,6,6%}. 0>-1 =02 0>-0=0>=1+0,and 6?-6%> = 0* = 0> + 0.

0 01

Thus ¢pz = |1 1 0. Thus Tr(6%) = 2. Then Tr(#*) = Tr(6?) + Tr(0) = 2.
011

Hence D(1,0,6%) = 3 - (=5) +2 - (—4) = —23. Now —23 is squarefree, and so

ox = Z[0] = 7+ 76 + Z62. Also, d(K/Q) = —23.

Definition 3.9 Definition of the discriminant of a relative extension. If oy, is a free
ox-module with basis {z;}, then we set Z(L/K) = (det(Trp/k (z;x;))) (where (—) is
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the ideal in o).

Now in general, we only have a basis {z;} when ox is a PID. To define the relative
discriminant Z(L/K), it will suffice to define v,(Z(L/K)) for each prime ideal p of
0. Recall that ox p, is a PID. Let 24, ..., x, denote a basis for o7, := 07, ®,, 0, OVer
0k Set v(Z(L/K)) = vy(det(Tr(z;2;))). This is independent of the choice of basis
(exactly as in Lemma 3.2). It remains to check that v,(Z) = 0 for almost all p. Pick
Y1, .-, Yn a basis of L/K with all y;’s algebraic integers. Then o7, O > oxy; 2 Noy,
where N = (o, : > ogy;). If pt N, then N is a unit in 0xp, and so 07, = > 0k Ui
Suppose that p t N and p { det(Tr(y,y;)). For such p, we conclude that by definition
vp(Z2(L/K)) = 0. It follows therefore that Z(L/K) is well-defined.

3.1 The absolute norm of an ideal

Definition 3.10 Let K be a number field, and let a be an integral ox-ideal. We
define the absolute norm Na of a by Na = |ox/a| = (0 : a).

Proposition 3.11 Suppose that a and b are integral ogx-ideals. Then N(ab) =
(Na)(Nb).

Proof. It suffices to prove this result when b = p, a prime. Observe that ap C a

and ker (OK/ap aotiel! OK/a> = a/ap. Now a/ap is an ox /p-module. We have that
ox/p =T, a field, and so a/ap is an F-vector space. Thus a/ap is trivial iff a = ap
iff o5 = p, which is a contradiction. We wish to show that a/ap is a one-dimensional
F-vector space (since then it will follow that |a/ap| = |ox/p|). Thus assume for a
contradiction that dimg(a/ap) > 1. Then there exists an M such that 0 # M C a/ap,
where M is a one-dimensional F-vector space. So, if 7 : @ — ap is the canonical map,
then we must have a D N D ap, so og D a ' N D p, which is a contradiction since p
is maximal. Hence dimg(a/ap) =1, i.e. |a/ap| = ok /p|.

Remark. Note that the map N extends to all of I by multiplicativity.
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Proposition 3.12 |Ng/g(z)| = N(zog) for x € 0.

Proof. Since Z is a PID, we can find a Z-basis x1, . .., x, of og such that a1x1, ..., a,z,
(a; € Z) is a Z-basis of xog. Then ox/xox ~ @, Zx;/ D}, Zax;, and so
lox/xok| = [[_, a;. Next, observe that {zz;} is also a Z-basis of zox. Hence it
follows that the maps ¢, : x; — zx; and 0 : x; — ax; satisfy |det p,| = |det 8] =
[1;_, @i = |ox/xok|. This proves the result.

25



Chapter 4

Decomposition of Ideals in
Extension Fields

Suppose we have an extension of number fields L/K. We have K D ox D p. We may
write por, = [[7_, B

Terminology.

1. e; is called the ramification index of 3; in L/K.

2. ipl Noxg = p. So OK/]J = Fq — UL/(»BZ‘ = qui- fz = diqu(OL/mi). We call f,
the residue class extension degree of L/K.

Theorem 4.1 Y7 e, fi = [L: K].
Proof. We do the case K = Q. Choose a Z-basis z1,...,z, of 0. Then oy /po; ~
> Fyxi, and so (og : por) = p". Now consider the following series:

oL DP1DP; D DPT P Dogp = por.

At each step, we have a D a3;, a/a3; ~ o/, and |0 /PB;| = pi. Continuing in
this way, we obtain (oy, : poy) = [[L_, pi® = p>¢i = p" (from the first part).
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Remark. In general, the latter half of the argument goes through. However, we
cannot in general find an ox-basis of 0;,. So we localize and use the isomorphism

0r/poL = 0rp/poLp Z(OK,pIz’/PUK,p)Iz

(ok,p is a PID).

Lemma 4.2 Suppose we have an extension L/K with primes ideals 8 and p in L
and K, respectively. Then P Nox = p if and only if P | poy.

Proof. Recall that B | poy, if and only if P D por. Now if P | poy, then
PNoxg DporNog DP.

Since p is a maximal ideal of ok, it follows that p = P N og. On the other hand, if
PBNoxg =p, then (PNog)o, =poy, C Poy, and so P | p.

Theorem 4.3 Suppose that L/K is Galois. Then f; and e; are independent of the
particular ; | p.

Proof. First observe that if 8 D poy and o € Gal(L/K), then L7 D p%0, = poy.
Hence Gal(L/K) permutes the divisors of poy. We wish to show that this action is
transitive. Choose

a€Pr, ag Py Py (%)

(We can do this since the {3;}{_, are distinct.) Consider Np/k(a) € P1 Nox = p,
ie. HaeGal(L/K) a’ € Py ---P,. Suppose we are given ¢ with 1 < i < g. We have
[1, a° € P;. Hence a” € P, for some o since P; is prime. We may apply our initial
condition (x) to obtain a” € P, a” & P93 - - -PB7. So comparing, we may deduce that
B; = P7, whence it follows that the Galois action is indeed transitive.

Terminology.
1. If g = n, we say that p is completely split in L/K.

2. If e = n, we say that p is totally ramified.
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3. If f =n, we say that p is totally inert in L/K.

Definition 4.4 Let R be a commutative ring. The Jacobson radical J of R is the
intersection of all the maximal ideals of R.

Proposition 4.5 z € J iff 1 — xy is a unit in R for all y € R.

Proof. Suppose that 1 — zy is not a unit. Then it is contained in some maximal
ideal m, say. Then x € J C m, and therefore 1 € m, which is a contradiction. Now
suppose that z € m for some maximal ideal m. Then (m,z) = R, and so 1 = m + zy
for some m € m and y € R. Hence 1 — 2y € m, and so 1 — zy is not a unit.

Proposition 4.6 (Nakayama’s Lemma) Let M be a finitely generated R-module,
and suppose that a is an ideal of R contained in J. Suppose further that aM = M.
Then M = 0.

Proof. Suppose that M # 0, and let uy,...,u, be a minimal set of generators of
M. Since u, € aM, we have u, = ajuy; + -+ + ayuy, a; € a, and so (1 — a,)u, =
ajuy + -+ ap_1u,_1. Since a, € J, we have that 1 — a,, is a unit (Proposition 4.5),
and so u, € (uy,...,u, 1), which is a contradiction.

Corollary 4.7 Suppose that M is a finitely generated R-module. Let N be a sub-
module of M, and let a C J be an ideal of R. Suppose that M = aM + N. Then
M = N.

Proof. We have a(M/N) = (aM + N)/N. Now apply Proposition 4.6 to M/N.

Now suppose that R is a local ring with maximal ideal m and residue field kK = R/m.
Let m be a finitely generated R-module. Then M /mM is a finite dimensional k-vector
space.
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Proposition 4.8 Suppose that {x;}; C M are such that {z;}?, C M/mM are a
basis for that k-vector space. Then (z1,...,x,) = M.

Proof. Set N = (z1,...,x,). Then the composite map N «— M — M/mM maps N
onto M/mM. Hence M = N +mM, and so M = N.

Theorem 4.9 Let L/K be a finite extension of number fields. Then p ramifies in
L/K if and only if p | 2(L/K).

Proof. Suppose that po, = [, B

%

1. Note that p ramifies in L/K iff the finite ring Ry, := or/po ~ [[]_; 0B has
no nonzero nilpotent elements.

2. Recall that v,(Z(L/K)) = vy(Z(01,p/0k,)). Hence it suffices to prove that
Ry, has nonzero nilpotents iff Z(or,,/0x,) =0 (mod p).

3. Suppose that p is ramified, and let  denote a nonzero nilpotent element of

R, Now Ry, is an ok ,/pok,, := k-vector space. Complete 1 =zZ,...,Z, to
a k-basis of Ry ,. Let x1,...,2, € o0r, be such that z; = z; (mod p). Then
T1,...,%, 1S an o p-basis of oy, , (Proposition 4.8). Now

D(orp/oky) = det(Try k(vz;))  (mod p) = det(Trg, , , (7:7;)) (mod p).

The elements z;7; are all nilpotents. Hence they all have trace zero (via Jordan
canonical form), and so it follows that Z(oy,,/0k,,) =0 (mod p).

4. Suppose that p is nonramified in L/K, with po;, = Py ---B,. Then R, , =

7 ,o0/PBi = [, Fi, where the Fj’s are finite fields. Let {Z;;};; € Rp,
denote a k-basis of F;. Then {Z;;};; are a k-basis of Ry, ,. Pick z;; € o such
that z;; = ;; (mod o0y, ,). By Nakayama’s Lemma, we have that {z;;};; are

a basis of oy, over ok ,. Then

D(orp/oxkp) = det(Tr(zijrer)) i g).er) (mod p) = det(Tr(Zi;Tum)) ),k (mod p)

(where we are ordering lexicographically). We claim that if i # ¢, then Tr(Z;;Z¢) =
0, for Tr(x;jze) is the trace of z;;z4 as an ogx-endomorphism of oy. Thus
Tr(Z;;Z) is the trace of Z;;Tg, as a k-endomorphism of o, /p = Ry ,. We may
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regard Z;; as (0,0,...,0,Z;;,0,...,0) (where the nonzero term is in the i po-
sition) since Ry, ~ [[1_; Fn. Hence Tr(Z;;Zg,) = 0 when i # ¢. Therefore,
as a matrix, det(Tr(Z;;Z¢)) is the determinant of a block diagonal matrix with
g blocks, so the determinant of the i*" block is the discriminant of F; over k.
However, d(F;/k) = det(xf;)3, (0 € Gal(F;/k)), and this is nonzero (cf Propo-
sition 1. 23) Hence det(TI'(.%U%gk))(Z”j),(g,k) # 0.

Theorem 4.10 (Kronecker) Let L = K(#), with 6 an algebraic integer. Let 6 have
minimal polynomial f(T') over K. Suppose that p C o0y is a prime ideal such that
p1lor:ox[f]]. Let k = ox/p, and suppose that f(T) = [1;9,(T)% (mod p), with
g; distinct, irreducible, monic polynomials over k[T]. Then po; =[] j &]3? , where the
B, are distinct prime ideals with P; = (p, g;(0))oL,

Proof. Let N = [0, : 0kl[f]]. We are given that p { N. We have that No;, C
ok(0) C or. Tensoring with ox, and using the fact that N is a p-unit gives
OLp - oK,p[H] - O0L.p; and so oK,p[G] =0Lp.

We show that the B;’s are prime ideals of o;,. We have

or or Oy ogpl0]  ~ 0xp[7]

B, 0.50)  3.90)  #g0) (o), /(D)

Now
0xp[1] k[T k[T

(p.g;(T), F(T)) — (g;(T), F(T)) — (g;(T))’
and this last quotient is a field.

We now show that poy = [, P’ First observe that

H‘Bej = H p.9;(0)7 = [(3:(6)7  (mod p) =[] (f(8)) = (0).

J J

Hence

H‘B;j C por. (*)
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Now recall that the proof of Theorem 4.1 implies that

(or : por) = [k[HF) = [k| D). ()
Calculate (oL [ ‘,Be”) : ;). In the above step, we showed that (o,
B,) = |k, Hence (cf proof of Theorem 4.1), we have that

[LCor : 9y) = [k des@) = [g|tes(h). (%% %)
J

It therefore follows that (x) is an equality.
We leave it as an exercise to show that distinct g;’s give distinct primes.

Remark 4.11 With the same setup as in Theorem 4.10, we have

Ap(L/K) =A(f) = H(ez - 9j)

i<j

and Z,(L/K) = (A2) C ok, Hence p | Z(L/K) iff f has a repeated root (mod p)
iff e; > 1 iff p ramifies (cf Theorem 4.9).

Example. Calculate the ring of integers and discriminant of K = Q(+/2). Set

0 = /2. Calculate D(1,6,0%) = = —108 = —2? .33 There are two

O O W
o O O
o O O

possibilities:

1. Can @ = $(A; 4+ Aaf + A\36?) be an integer, 0 < A; < 1?7 We have Trg g(a) =
% € Z, and so \; € 2Z. So A\ = 0, and therefore o = %()\294- A\36?) is also an
algebraic integer. Ng g(af + b0%) = 2(a* + 4b%). Thus N(o/) = %% + A3, Thus
the only possibility is Ay = 0, A3 = 1, i.e. o/ = %92 = %, and this is not an
algebraic integer.

2. Can a = %()\1 + Aof + A360?) be an integer, 0 < \; < 27 Trgg(a) = M € Z.
Now just check the possibilities. Suppose A\; = 0. Then o = %()\29 + A\36?) is

an algebraic integer. Then N(o/) = %. Now 2A3 + 2423 = 0 (mod 81),
and so 2A3 = 0 (mod 3), s0 Ay =0 (mod 3). If A, =0 (mod 3), then $A36? is
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an algebraic integer. But N (%)\302) = 42—)‘73, and this lies in Z only if A3 = 0.

Similarly, by considering o and af?, we may assume Ay # 0 and X3 # 0. Now
just compute lots of norms.

Suppose that p is a prime and a is an integer with (a, p) = 1. The Legendre symbol
<%> is defined by

—1 otherwise,

(a) B {1 if 2 —a=0 (mod p) has a solution,
p

ie.
(a) _J1 ifais a quadratic residue  (mod p),
p) | -1 ifaisa quadratic nonresidue  (mod p).

The Legendre symbol induces a map F) — {&1} given by a (%) This is a ho-

momorphism. (To see this, use the fact that F ¥ = (2), say, is cyclic.) Hence we have
2=1/2 = _1 50 we obtain

Euler’s Criterion. aP~9/2 = (%) (mod p).
So for example (—1)P~1)/2 = (%) :

Law of Quadratic Reciprocity. Let p and ¢ be distinct odd primes. Then

1. <—?1) - (_1)(;)—1)/2'
2. <%> — (_1>(p2—1)/8.
5 (5) (2) = (o

Example 4.12 Quadratic fields. Let L = Q(v/d) and K = Q. Then p ramifies in
L/K if and only if p | d(L/K). Thus if d =1 (mod 4), p ramifies iff p | d. If d # 1
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(mod 4), p ramifies iff p | 2d. Set

o Vd ifd#1 (mod 4),
4 ifd=1 (mod 4).

Then, in each case oy, = Z[6)].

1. Let d # 1 (mod 4) and # = v/d. Then f(T) = T? — d. p splits in L/Q iff f(T)
factors (mod p) iff T? = d (mod p) has roots iff (%) = 1.

2. Suppose that d = 1 (mod 4) and that p { d and 0 = %8. Note that 6 has
minimal polynomial (z — 6)(z — §) = 2> — x + 5% Suppose p # 2. Then
consider (x — %)2 — f—f = 0 (mod p). Thus p splits iff (g) = 1. Now suppose
that p = 2, and consider 22 + x £ %l (mod 2). This polynomial splits if d = 1
(mod 8), in which case 2 splits, and is irreducible, and hence 2 is inert, if d =5
(mod 8).
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Chapter 5

Class Numbers and Units

1. We show that I /Px = Ck is finite — not a very effective process, calculating
|Ck| = hx. We then give a second proof — due to Minkowski — which gives a
very effective method of calculation.

2. oy is a finitely generated Z-module. Its torsion elements are those u € oy such
that u™ = 1, i.e. roots of unity. The classification theorem for finitely generated
abelian groups says that oy = ux X Z", where px is a finite group.

Theorem. (Dirichlet) Let K be a number field, and let px be the group of roots
of unity in K. Then Dy = px x Z***~! where s is the number of real embeddings

K — R, and 2t is the number of complex embeddings K < C. (Note that if K/Q is
Galois, then all embeddings are either real or complex.)

Example. Suppose d > 1, d squarefree, and let K = Q(v/d). Then o} = {£1} x Z.
Call a generator of 0 /{£+1} ~ Z a fundamental unit of 0.

[Exercise. Such ¢ “generate” solutions to Pell’s equation x? — dy? = +1.]
Theorem 5.1 Cx = Ik /Py is finite.
To prove the theorem, we prove the following assertion: Let zq,...,x, be a Z-basis

of 0k, and let ¢ € C'x. Then we can find an integral ideal ¢ with class ¢ such that
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N(c) <TI, O_;1z7]), where the ¢’s run through all embeddings of K into C.

Proof of assertion. Let . = {}1"  a;z;, a; €Z |0 <a; < (Na)'/" + 1}, where

n = [K : Q] and a is an integral ideal in the class of ¢7'. Note that || > Na.

So by the pigeonhole principle, there exist «, f € % such that a = # (mod a), i.e

(v — B) = ca with ¢ an integral ox-ideal. Since (o — [3) is principal and a is of class
1 it follows that ¢ has class c. Hence

[ =57 <

(e

[Nicjola = B)| =

((Na)'/™ +1) H (Z |x”|>
NeNa < (Na)'" +1)" [ [ (Z w) .

N. < <1+(—1/n> H(Zm).

We may make W as small as we desire by replacing a by aa. Hence it follows
that No <T[, (3, |27]). Now observe that there are only a finite number of integral
ox-ideals with norm at most a given number m, for there are only finitely many
primes p < m. So we have to show that there are only a finite number of ideals with
norm a given prime power p”. But note that such prime ideals must occur in the
factorization of poyg since p"ox C pog, and these are finite in number.

Thus

Example 1. K = Q(i), ox = Z[i]. Thus Nc¢ < (1 +[¢])(1 +|i|) = 4. If Nc = 2, then
205 = (1 —1i)? and (1 — i) = po is principal. If N¢ = 3, then 3o = p3 is inert (since

via considering z* = —1 (mod 3) and (3!) = —1, and so 3 is inert). Hence Z[i] is a
PID.
Example 2. K = Q(v/551). Thus ox = Z[v551], and 551 = 19 -29. Then

{1,551} = {1,202}, say. Thus N, < (1 + +/551)2 < 597. Help! (However,
Minkowski’s bound gives N¢ < 46.)
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Minkowski’s Bound. Same setup as in Theorem 5.1. Then

Ne< (%) ™ ik Q).

Example 3. Find the class group of Z[v/10]. By Minkowski’s bound, we can find ¢
in each class such that N¢ < 2[4 -10|"/? < 4. Consider ps. Now 2 | 40, so 205 = p3.
By Kronecker’s Theorem, py = (2,1/10). Is this principal? Suppose that p, = (a),
where a = z + yv/10. Then 205 = pops = (a@). So £2 = aa = x> — 10y?, which is a
contradiction, since reducing this equation (mod 5) yields (%) = 1, which is false.
Hence p, is not principal, and so its class has order 2. Now consider p3. Consider
2?2 — 10 (mod 3). This splits, and so we get 30k = psps. Kronecker’s Theorem tells
us that ps = (3,410 — 1) and p3 = (3,4/10 + 1). Suppose that ps = (a), where
a = z+yv/10. Then we get £3 = aa@ = 22 — 10y?, which is a contradiction as before.

5.1 Consequences of the Finiteness of the Class
Number

1. Consider solutions to Diophantine equations of the form z3 = 3? + d (where
usually d > 0). We seek integral solutions. We shall suppose that Q(v/—d) has
class number prime to 3. Let us take as an example the case d = 200. We work
in K = Q(v/—2). We check that ox = Z[v/—2] is a PID (use the Minkowski
bound). Look at the factorization of ideals (%) = (y++/—d)(y—+/—d). Observe
that ged((y+10v/—2), (y—10v/=2)) | 20/=2 (i.e. the ged divides the difference
of the two generators). We check on the behavior of 2 and 5 in K. Then (2) = p3
(by inspection, since 2 | 8 = d(K/Q)). z*> — 2 (mod 5) is irreducible, and so 5
is inert, i.e. ps = (5). Hence ged((y + 10v/=2), (y — 10/=2)) = p3ps. Write
(y + 10/—2) = ap4p? with (a,10) = 1. Applying complex conjugation to both
sides gives (y — 10v/=2) = ap2p?, with (a,10) = 1. Hence (y + 10v/=2)(y —
10v/=2) = aap3?p2®, and so 3 | a and | b. Now by definition, (a,a) = 1, and so
a and a are both cubes. So (y + 10v/—2) = b®, say. Since ok is a PID, we have
b = (a+3v—2). [Note that to show that b is principal, it would suffice to show
that K has class number prime to 3.] Now ox = {£1} by Dirichlet’s Theorem.
So y + 10y/=2 is a unit times (o + $v/—2)3, which is 1 - (o + $v/—2)>. Thus
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without loss of generality
y+10V=-2 = (o + 8v=2)" = (o’ = 68°a) + V=23’ - 26°). (%)
Equating real and imaginary parts yields
10 = B(3a® — 26%). (%)

Hence the possibilities for 3 are § = +1,+2, £5, +10. Suppose # = +1. Then
10 = +(3a? — 2). If we take 8 = +1, then 3a* = 12, and so a = +2. From
(%), y = a® — 66%a = +2(4 — 6) = £4, and so 2> = 16 + 200 = 63 (from the
defining equation). If we take 3 = —1, then we have 10 = —3a? + 2, which is
a contradiction. This is called the method of descent. Other possibilities for
are left as an exercise.

2. Consider integers represented by the quadratic form X2 — 2Y2. We take K =
Q(V/2). First observe that n = 22 — 2y iff Ngo(x + yv2) = n. Note that
Nk jo(1—+/—2) = —1, and so henceforth we do not worry about signs. We claim

that n is represented by X2 — 2Y2 iff n = 2 [, p* [[, ¢°*, with < ) =1 and

2
v Di

<%> = —1. To see necessity, suppose that ¢*"*||n = 2% — 2y?, with (%) = -1,

where ¢ is an odd prime. Reduce modulo g. This yields (z/)? = 2(y')? (mod q),
with 2’ and 3’ nonzero modulo ¢. This is a contradiction, since otherwise

<2> = 1. To see sufficiency, we first check that Z[v/2] is a PID. The value

q
set of solutions is closed under multiplication (by multiplication of norms). Ob-

viously —1, 2, and ¢? are all represented. Thus we are required to prove the

above p; are represented. If (5) = 1, then 2% — 2 (mod p;) splits, and so

PiOK = pzﬁza with P 7£ ]31 Now Z[\/ﬁ] is a PID, and so p; = (Oél) (pz) = (OélO_éz)
Thus p; = a;@;. Let a = 2; + 1;v/2, and then we have +p; = 22 — 2y2.

5.2 The Geometry of Numbers

Definition 5.2 Let H C R" be a subgroup. We say that H is discrete if H N K is
finite for all compact K of R™.

Example 5.3 Suppose vy, ...,v, is a basis in R". Then ) | Zv; C R" is discrete.
7 + 7Z+/2 C R is not discrete.

37



Theorem 5.4 Let H be a discrete subgroup of R". Then H is generated over Z by
r vectors ey, ..., e, which are linearly independent over R.

Proof. Choose eq,...,e, € H with eq,...,e. R-linearly independent and with r
maximal. Set Pe = {>_._, aye;| oy € [0,1]}. Pe is called the fundamental parallel-
ogram of H with respect to the basis e1,...,e,. Note that P, is compact since
it is homeomorphic to [0,1]". Let x € H. We can write z = Y., \e;, with
Ai € R, since r is maximal, for otherwise we could adjoin = to the e-basis. For
Jj € Z, define x; := jxr = Y. |Nijle; (where |-| means “integer part”). Thus
x; =, (Nj—[Nij])ei. So we have z; € Pe. In fact, z; € Po N H. Recall that, since
H is discrete, |Pe N H| < oo. Consider j = 1. We have z = x1 + > | \;]e;, so z is in
the Z-span of a finite set, i.e. H is finitely generated over Z. By finiteness of P. N H,
we can find j # k so that x; = x;. Expanding gives

DN = ke =D (LA = kA)es,

and so \(j — k) = |[JAN] — [kNi], and so A; € Q. Now let x vary in P N H,
x =Y Ne;. Let d be the least common multiple of the \;’s. For any x € H, we have
r=x1+ > |Nle; € 33 Ze;. Thus H C 55" 7Ze;. So Y Ze; € H C £33 Ze;. Hence
H is Z-free of rank r on some combination of the {éei}, so this basis is R-linearly
independent, as required.

Definition 5.5 With the above notation, call H a lattice in R" if r = n.

Definition 5.6 Let e = {ey,...,e,.} and f = {f1,..., f,} be Z-bases of H. We define
Vol(H) := Vol(Pe). Note that a change of basis e — f corresponds to a matrix in
GL,.(Z), and so Vol(Pe) = Vol(P¢) since the change of basis matrix has determinant
of absolute value 1.

Theorem 5.7 (Minkowski) Let H be an R™-lattice, and let . C R" be a mea-
surable subset such that Vol(.#) > Vol(H). Then there exist z,y € .% such that
x—y € H\ {0} (i.e. z and y are distinct).
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Proof. Let e,...,e, be a Z-basis of H. Write R" = (J,.y Pe + h. Then .7/ =
Unerl(h +Pe) NZ]. (Note that if hy # hy € H, then (Pe + hy) N (Pe + hs) has

measure zero.) Thus

Vol(.#) = Y " Vol((h +Pe) N.#) = Y _Vol(Pe N (L — 1)) (%)

heH heH

(Note that volumes are translation invariant.) Now suppose for a contradiction that
the sets Pe N (- — h) are all disjoint. Then we would have

Vol(Pe) > > " Vol(Pe N (' — h)) = Vol(.#),

and so we would have Vol(H) > Vol(.#), which would contradict the hypothesis. So
we conclude that the sets Pe N (. — h) are not disjoint. So we can find h # h' with
PeN (S —h)N (S — h') # @. Hence there exist x,y € . such that xt — h =y — h'.
Since we then have x —y =h — h' € H and h # I/, it follows that x — y # 0.

Definition 5.8 We say that . C R” is symmetric if x € . implies —z € ..

Definition 5.9 We say that . C R” is convex if for all z,y € . and « € [0, 1], we
have that oz + (1 — a)y € 7.

Corollary 5.10 (Blichfeldt) Let . C R™ be a symmetric, convex, measurable sub-
set, and suppose that Vol(.#) > 2" Vol(H) (where H is as above). Then .¥ contains
a nonzero point of H.

Proof. Set .7/ = .. Then Vol(.’) = 5= Vol(.#)) > Vol(H). Hence by Theorem
5.7, there exist y, z € .’ such that z == y—z € H\{0}. Soz = 1(2y)+3(—22) € H.
Now 2y € ., by definition, and —2z € . by symmetry. Thus x € .¥ since . is
convex. So x € (¥ N H) \ {0}, as required.

Embellishment. With our previous notation, suppose further that .# is compact,
but that Vol(.#) > 2" Vol(H). Then we can still find a nonzero element of . N H.
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Proof. Since . is compact, it is closed and therefore complete. Consider .¥, =
(14 1) . for each positive integer k. Then Vol(.#};) = (1 + £)" Vol(.#) > 2" Vol(H).
Hence, as before, we can find =5, € (%, N H) \ {0}. Therefore z; € (2.) N H, and
this last set is finite since H is discrete. Hence there exists z,, such that z,, € (), 7.
Since .7 is closed, it follows that z,, € 7. (% =), “%.)

Now we introduce notation that will apply for the rest of the chapter. Let K/Q

be a given number field, and let {o;} , be distinct embeddings of K — C, where

n = [K : Q]. Let s be the number of real embeddings (so 0;(K) C R), and let

2t be the number of complex embeddings (so 0;(K)  R). Henceforth, we suppose

that oy,...,0, are real and that 4, ; = 05441;. We have the fundamental embedding
K — RS x C! given by z — [[2} ().

Note. o is a homomorphism of Q-algebras. (Often we shall identify R* x C* with
R™ as vector spaces (not as rings!).)

Proposition 5.11 Let M C K denote a Z-module of rank n = [K : Q] with
{x1,...,2,} a basis. Then o (M) is an R"-lattice with Vol(o(M)) = 27| det(x;”)].

Proof. Let x € M, and let o : K — R® x C' be our fundamental embedding. Then

°p)

s+t S s+t o —0% oy
Hgfhx [T R x 3@7)) = [[+" x [] (x ‘2“” xxw__ﬁ )

1=s+1 =1 i=s+1

Note that Vol(o(M)) = Vol(...,o(x;),...) (i.e. the volume of the object generated
by {o(z;)}) is equal to

T4 T

2% w5t tal e s
J 2 2/—1

det |j<s s+1<i<s4+t s+t+1<i<2+s
A B C

Multiplying block C' by v/—1 and adding to block B yields

o, o,
m 2% A
J 2v/—1 .
A’ B’ C’

Vol(e(M)) = |det
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Now <B’ X 2\/1_71> + C' yields

Vol(o(M)) = |det [2]* 25 aF]

J J

27t = 27! det(27)] # 0

(by Proposition 1.23). Hence the {o(x;)}, are R-linearly independent, and so o (M)
is a lattice.

Note that if M = og, then (M) is an RR™lattice, and Vol(o(M)) = 27|dg o|"/? #
0.

Proposition 5.12 Let a be an ox-ideal. Then o (a) is an R™ lattice, and Vol(o(a)) =
2_t’dK/Q|1/2NCl.

Proof. We know that a is a free Z-module of rank n. So we may apply Proposition
5.11 to deduce that o(a) is an R"-lattice. We evaluate Vol(o(a)). Note that (ox :
a) = Na implies that (o (o) : o(a)) = Na since o is injective. Thus Vol(o(0k)) =
Vol(o(a))Na™!. So

27"\ dg g|* = Vol(a(0k)) = Vol(o(a))Na™,

and so Vol(o(a)) = 27!|dg/o|"*Na.
We now wish to apply Blichfeldt’s corollary, et cetera, to this situation.

Proposition 5.13 Let a be an integral ox-ideal. Then there exists x € a, z # 0,

such that

AN\ n!
Nzl < [ =) —=|dgol|?N
|Nz| < (W) n"’ k0l /*Na

(where N = Nk q).

Proof. View o as having values in R®* x C'. Let u be real and positive. Define
B, C R* x C! by

Bu={ee ooy ) B ) Yl 423l < u)
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B, is compact since it is closed and bounded (e.g. by the u-hypercube). It is trivial
that B, is symmetric. To show that B, is convex, suppose that > [y;| +2>" || < u
(corresponding to a point P) and ) |y;| + 2> [2}| < u (corresponding to a point
Q). It remains to prove that if a € [0, 1], then aP + (1 — a)Q € B,. The triangle
inequality implies that

LHS <a) |yl+2a) |zl+1—a) Y |gl+2(1—a) Y |2 < aut(1—a)u = u.

Hence B, is convex.

For the present, assume that

™\t u"

Vol(B,) = 2° <§> (+)

We want to apply Blichfeldt (i.e. Corollary 5.10) to the lattice o(a) and B, with u
well-chosen. We cunningly choose u such that Vol(B,,) = 2" Vol(o'(a)) = 2" |dk/g|'/*Na
(from Proposition 5.12). Then from Corollary 5.10, we can find o(z) € o(a) \ {0}
with o(z) € B,. Now

n!’

t
H |£B0j|2.

j=s+1

N@) =]l = ]+
=1 =1

Recall that the geometric mean is less than or equal to the arithmetic mean for
nonnegative numbers. Thus
T\ 4 n n
7j=1
since o (x) € B,. So now we solve for our cunningly chosen value of u, i.e. Vol(B,) =
2" Vol(o(a)), so 2° <g—:) Yl = 2" dgg|'*Na, so u" = %n!|dK/@|1/2Na. Hence, fi-
nally we obtain |N(x)| < (%)t 2 |dre gl /2 Na.

We now have to compute Vol(B,(s,t)). Set V(s,t,u) = Vol(B,(s,t)). We use double
induction on s and ¢t. Now V(1,0,u) = 2u (the segment [—u,u]) and V(0,1,u) = ”T“Z
(the disc of radius u/2). Assume by induction that (%) above gives V(s,t,u). We

compute V(s + 1,t,u). The set B, (s + 1,t) is defined by the relation
s t
yl+ ) il +2) |zl <,
i=1 j=1
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with y € R. Integrating “in strips” and noting that for y > u, B, = &, we obtain

w t _ n ‘ ntl
Vs, t,u—ly|) dy = 2/ 2° (g) M dy = 2511 (g) u
0

n! (n+ 1)V

u

V(s+1,t,u) = /
and this agrees with (x). Now we compute V' (s,t+1,u). The set B,(s,t+1) is defined
by >0yl +2 23:1 |zj| 4 2|2| < u, with z € C. Again, “integrating in strips” yields

V(s,t+1,u) = / Vs, t,u—2|z|) du(z),

lz[<%

where dyu(z) denotes Lebesgue measure on C. Putting z = pe? (p € R*, 0 < 6 < 27)
yields

22Nt (u— 2p)" 27
t+1,u) = 2 (5) ———pdpdo =2’ m_ —2p)"p dp.
Vs, t+1,u) /0 /0 (2> o pdp (2> n!/o (u—2p)"pdp

Calculating fou/z —2p)"p dp by substituting 2p = x and integrating by parts shows

unt? s (T t+1 w2
ey Vis,t+1,u) =2°(3) Ty Which

again agrees with (x), since s + 2(t + 1) = n+ 2. This completes the proof of Propo-
sition 5.13.

that this integral has the value ;

Th?orem 5.14 Each ideal class of K contains an integral ideal ¢ such that N¢ <
(é) £|d1< ’1/2
™ nn /Q :

(Note that this yields another proof of the finiteness of the class number.)

Proof. Let ¢ be a class in the ideal class group of K. Choose an integral ideal a € ¢™1.
Apply Proposition 5.13 to find an x € a\ {0} such that |N(z)| < (%)t 2 |d ol Na.
Now since z € a, () = aX, with ¥ integral. Hence

4\" n!
|INaN¢| < (—) n—\dK/@\l/zNa,
s nr

4\ " n! 1/2

™

SO
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Note that 3 lies in the ideal class ¢ since (z) = aX.
Theorem 5.15 (Hermite, Minkowski) If K # Q, then |dg/q| > 1.
Corollary 5.16 If K # Q, then there exists a ramified prime in K/Q.
Proof of Theorem 5.15 Apply Theorem 5.14 to the identity class: 1 < N¢ <
()" ldxsal 7, 50
gl > (D) 2= ()7 2 — i,

4/ nl 4 n!

say. It suffices to prove that u, > 1:

1 2(n+1) 12 1 2n
un+1:<z>(n+) (n!) 714! 23_7r>1.
Up, 4 n2n (n+ 1)1 4 4

Now uy = %2 > 1, and so the result follows.
We now aim for Dirichlet’s unit theorem.

Theorem 5.17 There is an isomorphism of groups oy =~ ux X Z*71 where ug
denotes the roots of unity in K and s+ ¢ — 1 is the rank of oj.

Philosophy. Introduce a logarithmic map L : K* — Rt where L(z) = (..., log|z"
We then apply our work on lattices, et cetera, to the image L(o}).

Lemma. An element & € og is a unit iff Ng/g(z) = £1.

Proof. For the forward direction, if z, 27! € ok, then Ng q(z)* € Z, so Ng/g(z) =
+1. For the reverse direction, suppose that Nk /qg(x) = £1. Consider the character-
istic equation of multiplication by x on K, i.e. the characteristic equation of ¢,. We
obtain T" +a;T" ' +---£1 = 0. Hence x(z" ' + 12" 2 ++--+a,_1) = F1, and so
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x 1s invertible.

Warning /Remark. 1%2 Q(7) has norm 1. However, it is not an algebraic integer

and so is not a unit. So norm =+1 by itself is not sufficient.

Observations prior to the proof of Theorem 5.17 We set n = [K : Q), fixed.

1. Describe ker(L | oy ). Let € ker(L | 0%). Then |z7| = 1 for all i. Suppose
that x has characteristic equation 7" + a;7" ! + - - - + a,, = 0. Recall that the
a;’s are the symmetric functions in the {z7}. Hence the a;’s are all bounded
absolutely (in terms of n), and so z is a root of only a finite possible number
of equations. Therefore |ker(L | 0})| < oo, and so 2¢ = 1 for some d, i.e. x
is a root of unity. Let px denote the roots of unity in K. We’ve shown that
pr D ker(L | o). Observe by inspection of L that ux C (L | 05). Summing
up, we have shown that px = ker(L | o)) is finite and cyclic.

2. Show that L(oj) is discrete in R¥™. Let € denote the c-hypercube in Rt
It is required to prove that |¥ N L(ox)| < co. Suppose that L(z) € €. Then
L(z) = (...,log|z%],...) and |log|z?|| < ¢ for all i. Hence |27 < e for all
i. Let x have characteristic equation 7" + a;7"" ! + - -- + a,,. Then, for fixed
¢, the {a;} are bounded and in Z. Hence there are a finite number of possible
such characteristic equations and so a finite number of possible z’s. Therefore
|¥ N L(ok)| < oo, as required.

3. What is the rank of L(o}) in R5*? We shall show that L(oy) lies in a fixed
hyperplane of R¥*: Let

= {(517 ooy €sqt) € R

s+t
Z&H > &,—0}

=541

We claim that L(o)) C H. Forlog [\, =
log |[N(z)| =log1l=0. Thus

0= Zlog |z = Zlog |z

and log [, «7

=" log|z”i

s+t

+2 Z log |27,

1=s+1

ie. L(z) € H.
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To prove Theorem 5.17, it is sufficient to prove that L(oj) is an H-lattice.

Strategy. Let f: H — R be a nonzero R-linear function. We shall show that there
exists u € oy such that f(L(u)) # 0. This implies that L(ox)R = H. [For if not,
then suppose that L(ox)R =V # H. Then we may write H = V @& W. Consider
the linear function g : VW 5 W L, R. This vanishes on V = L(0%)R, which is a
contradiction.]

Proof of Theorem 5.17 Frequently we view H ~ R” (where r = s+t — 1) via
(&1, €sat) — (&1,--.,&). We may obtain an inverse by using the linear relation
defining H to calculate what &, is. So define f(&) = >_;_; ¢;&;, where not all of the
¢;’s are 0. Once and for all, fix a € R such that

az (2 ) i V2 ()

As a convention, given A = (Ay,...,\.) € (RT)", define A’ € R with A’ =
(AL, Ay Aape) with T, M T2, A2 = o (where a is fixed). Define

1=s+1
B)\oz = {(ylv ey Ysy 21,y - -7zt> € R* x (Ct : |yZ’ S Aiv |Z’L| S >\S+’L}

Observe that Bj , is symmetric, compact, convex, and

s+t
Vol(Bx ) = HQ)\ H 7T)\2 2rtan.
i=s+1
From (x), we have 2'wta > 2°%|d/g|'/? = 2" Vol(o(0k)). Now apply Blichfeldt
(Corollary 5.10) to find zx € ox \ {0} with o(zx) € Ba,. Note that, by definition of
By o, we have [2| <

I ES

23] = [N(za
J#i
> %
J#i
= 1IN
j#i
= Oé_l)\z'.
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To sum up: a ')\ < |25
S0

< \;. Take logarithms: log \; —loga < log [z5| < log A,

0 <log\; —log |z7] <
Now f(L(zx)) = f(...,log|z5],...) =i a

T T

F(L(za) = cilog | = > cilog 25| — log Ay)

i=1 =1

(1)

< <Z|Cz|> loga  (2)

(from (1) above). Now pick 5 > (D>"'_, |¢;]) log a. For each h € N, construct a vector
A(h) = (Ai(h),..., A(h)) € (RT)" such that

r

> " cilog Ai(h) = 23h. (3)

=1

Construct as before a collection of vectors {xxm)}p2,. Note that our previous in-
equalities hold for these xx(n). Substituting (3) into (2) gives | f(L(zan))) —28h| < 8.
So

(2h = 1)8 < [f(Llzam))| < 2h+1)0. (4)

Thus, in particular, the f(L(zxp))) are all distinct, and so the zx() are all distinct.
In addition, we have

s s+t
N(zam)l < TJrm) T xih)* =
=1 1=s+1

Recall that there are only a finite number of integral ideals a such that Na < a. Hence
the collection of ideals {x )0k }72, has repeats, say xx;0x = x)0x (¢ > 7). Then
Tx@) = UTA(), U € 0f, 50 L(xxs)) = L(u) + L(xxg)). Since f is linear, we have

F(L(@aw)) = f(L(w) + f(L(zag))-
Now (4) implies that f(L(u)) # 0, as required.

Remarks and Calculations with Units.

1. Terminology. Let uy,...,u, be a Z-basis of oy /ur. We call uy,...,u, a
system of fundamental units for K.
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2. Cyclotomic Unit. Let ¢ = ¢*/? and K = Q(¢ + ¢~'). We have

Thus vg) = 5+ — 1, vg = &1 — 1. Hence (05 © 0k) < oo. Note that

v = C__;il € o0y (see the Problems). Do this for 1 < i < ’%1. Then (o :
(vg,... ) Upt )) ~ hg, the class number of K. We need the theory of L-functions
to prove this. (See, for example, Borevich and Shafarevich, Chapter IV, or
Washington’s Cyclotomic Fields.) A theorem of Kummer says that if p is odd,
then og ) = (¢) x 0%

3. Example. Find a unit of infinite order in K = Q(3/5). s =1,2t =2,s0r = 1.
Set 6 = /5. Calculate ox = Z[f]. 3 ramifies: observe that X3 — 5= (X + 1)?
(mod 3), and so we have (3) = p*. Note that Ng,g(2—0) = 3. (Hence 2—0is a
prime element of 0x above 3.) Thus (2 — 0) is a prime ideal above 3. Thus p =
(2—0) and so (3) = (2—0)3. Now (2—0)3 = (8 —120+660%—5) = 3(1—40+26%).
Hence it follows that 3 = 3-unit-(1 — 46 + 26?), and so 1 — 46 + 26? is a unit.

4. Quadratic imaginary field K.

6™ roots of unity if dx = —3
0x = px = 4 4™ roots of unity if dx = —4
+1 otherwise.

5. Real quadratic field K. K = Q(vd). If d # 1 (mod 4), then ox = Z[V/d],
and 0% = (£1) x (u), where u is a fundamental unit. Let u = a + bv/d. By
replacing u by +u*!, we may without loss of generality take a,b > 0. If we
write u" = a, + byV/d, we get a sequence {b,} which is monotonically increas-
ing. Thus, to find a fundamental unit, it suffices to find u with a,b > 0 and b
minimal. For example, in Q(ﬂ), 1 + V2 is a fundamental unit.
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Chapter 6

Galois Action and Prime
Decomposition

Let L/K be a Galois extension of number fields with Galois group I'.

L—P
F
K——%p
Suppose that po;, = [[7_, PB¢. Recall (see the proof of Theorem 4.3) that I' acts

transitively on the {*B;}.

Definition 6.1

1. The decomposition group I'y of P/p in L/K is defined by I'y = {y € ' :
P =P}, i.e. I'y is the stabilizer of .

2. The inertia group Ty of P/p in L/K is defined by Ty = {y € I' : 27 =«
(mod *B) for all x € or}.

Alternatively, write o,/ = ¢ and ox/p = k. Then reduction (mod ) induces a
group homomorphism p : 'y — Gal(¢/k) by the following rule: If x € oy, and v € Iy,
then 7¢(") = 7. (Note that this is well-defined since v € I'ys.) Then 'y = ker(p);
observe that Ty <1 I'p.
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Definition 6.2 The decomposition field Dy = L™ (i.e. Dg is the subfield of L
fixed by elements of I'y;.) We have the following Galois-theoretic tower:

1 L ‘B ¢
T D

By B 73(8,, 7 g/)d

T K p io) k

Lemma 6.3 The prime P is non-split in L/Dg (ie. ¢ =1).

Proof. Suppose that Po;, =B ---P’, where P # P’. By transitivity of Galois action,
there exists v € I'yy such that 7 = P, which is a contradiction since I'y = Stabp(B).

Proposition 6.4 Let p : 'y — Gal(¢/k) be the homomorphism described above.
Then p is surjective.

Proof. Viewing decomposition groups as stabilizers, we have Gal(L/K)yp = 'y =
Gal(L/Dg)q. We also have the following diagram:

p: Gal(L/K )y — Gal(¢/k)

p: Gal(L/Dg)p — Gal(¢/d)

To prove the proposition, it will suffice to show that Gal(¢/k) = Gal(¢/d) (i.e. k = d)
and that p : Gal(L/Dg)yp — Gal(¢/d) is surjective.

First we perform reduction to I' = I'z. We wish to show that £ = d, i.e. that f = f’.
From Galois theory, [Dg : K| = [I' : I'y] = ¢ (since I' acts transitively on the g 9;’s).
Recall (see Theorems 4.1 and 4.3) that [L : K| = efg. Also,

L: K] = [L: DylDy: K] = €9 [Dy: K| = ¢ f'[Dy: K] = ¢'f'g
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(where the penultimate equality follows from Lemma 6.3). Putting all this together,
we have efg = €' f'g, i.e. ef =€ f’. Next, we note that f' = [(:d] and f = [( : k],
and so f > f' since £ O d D k. Now Poj = R (from Lemma 6.3). Also,

por = (pUDgp)UL = (Ph"')UL — ;Bhe’

But in addition we have po;, = B¢--- (by the definition of €). Comparing yields
e > ¢/. We therefore have that k = d, as required.

Without loss of generality, take I' = Iy and Doy = K. Let « € o;,. We want to prove
that {27 = 2/}, cr_r,, runs through all Galois conjugates of T in ¢/k. Let x have
minimal polynomial f(7') over K. Let Z have minimal polynomial g(T") over k. Now
f(z) =0, and so f(z) = 0, and so g | f. The group I' acts transitively on the roots
of f(T). Hence p(T) acts transitively on the roots of f(T), whence on those of g(T)
also.

So we now have p : 'y — Gal({/k) and [d : k] = f. Also g|I'y = n = efyg, so
I'p| = ef. Now |Gal({/k)| = f and |I'y| = ef, so Ty = | ker(p)| = e. We have
DLy D Ty

Corollary 6.5 If p is unramified in L/K, then I'gy ~ Gal(¢/k).
Proof. In this case, |Tip| = e = 1.

Recall that since ¢/k is an extension of finite fields, Gal(¢/k) is generated by the
Frobenius automorphism Frob(¢/k) given by z + z!¥.

Definition 6.6 Let p denote an unramified prime of L /K. Then there exists a unique
(B, L/K) € I' such that p(*B, L/K) = Frob(¢/k). The element (B, L/K) is called
the Frobenius element of  in L/K.
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6.1 Elementary Properties of the Frobenius Ele-
ment
Proposition 6.7
1. (0, L/K) = 7Y, L/ K ) for all v € Gal(L/K).
2.

Let Gal(L/K) =T and Gal(L'/K
p. We have 6 : Gal(L'/K) — Ga
(B, L/K).

= I"". Suppose that L'/K is unramified at
(L/K) by restriction. Then (%', L'/K) =

—_

Proof.

1. First observe that the map z — 27 induces an isomorphism of fields o, /B
0,/P. Let ¢ = Np = |k|. Then (z7 )FL/K) = (z7-1)7 (mod P) for all = € oy
Apply v to both sides. This gives

2V HBL/E) — a (mod PB7)
for all x € 0. Hence, by definition, v~ *(B, L/K)y = (B, L/ K).

2. By definition of restriction, for z € oy, we have 20" = 27 for all v/ € I'. In
particular, for v = (', L’/ K'), we have

gOF LK) — pFLVE) = 20 (mod P') = 27 (mod P’ Noy) =27 (mod P).

Therefore, by definition of (8, L/K) and the uniqueness of the Frobenius auto-
morphism, we have (', L/K) = (B, L/ K).
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Example. Let L = Q(v/2,w), where w is a primitive cube root of unity. Then
Gal(L/Q) ~ Ss.

Claim. No prime p is totally inert in L/Q. For if it were, then we would have
p : Gal(L/Q) = Gal(¢/F,) (an isomorphism since there is no ramification, and
'y = Gal(L/Q) because p does not split). But the left side is S3, and the right
side is a Galois group of a finite extension of finite fields and so is cyclic. This is a
contradiction.

Exercise. Prove the same result by considering the factorization of 23 — 2 (mod p).

6.2 Cyclotomic Fields

Recall from Galois theory that (Z/mZ)* = Gal(Q((n)/Q) via a (mod m) — (o, :
Gm = G-

Theorem. (Kronecker-Weber) Let K/Q be an abelian extension. Then there exists
an m such that X' C Q((n).

Note. If 0 is the ring of integers of Q((,), then Z[(,] C o (in fact, this inclusion is
an equality). However, we certainly have

AL ¢y = T =),

G#¢
mt roots
and L’Hopital’s rule gives
™ —1
lim =m=[](1-C)
r—1 1 —
(#1

So if (p) | (1 —¢) (where ¢ # 1), then p | m. Also, if p ramifies in Q((,,)/Q, then
p | m. Also, we have ( = ¢’ (mod p), and so ( = ¢’ if p t m.
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Theorem 6.8 (Decomposition in cyclotomic extensions) Let (m,p) = 1, and let n
denote the order of p in (Z.mZ)*. Then n = f (i.e. the residue class extension degree

of p in Q(¢n)/Q).

Proof.
L =Q((n) —PB
F
K=Q p
I" is abelian, with I" o~ (Z/mZ)*. Let B be a prime in Q((,,) above p, and set f = fy.
We know that f is the order of (B, Q((,)/Q). Furthermore, we have (7, L/K) =
Y B, L/K)y = (B, L/K) since I is abelian. So we can denote this automorphism
unambiguously by (B, L/K). Then Cf,;’B’L/K) = (P (mod P). So Cf,;n’L/K)n = =(
(mod *B), since n is the order of p in (Z/mZ)*, so (P, L/K)™ = 1 since p is unramified
in L/K (and so p is injective), and so f | n. Now suppose for a contradiction that
f <n. Then

C(‘KL/K)JC = Cpf =( (mod P),

andso (P 1 —1¢ B. Since f < n, p/ #1 (mod m), and so ¢?"'=1 — 1 can be chosen
to be nonzero. By the above note, Cpf’l — 1 has divisors only dividing m. This is a
contradiction, since (m,p) = 1. Hence f =n.

Theorem 6.9 (Quadratic Reciprocity) Let p and ¢ be distinct odd primes. Then

(-

Proof. Let ¢* = (—1/q)q. Then L = Q(y/q*) is the unique quadratic subfield of
Q((y)- There are at least two ways to see this:

1. I' = Gal(Q(¢,)/Q) ~ (Z/qZ)*, and this has a unique subgroup of index 2.
Hence Q((,)/Q contains a unique quadratic subfield L, and ¢ is the unique
ramified prime in L. So L = Q(\/¢%).

2. (See problems) Let x be the unique character of I' of order 2, and consider the
Gaufl sum

706 G) = D Xx(1)¢ € QG).

~vel
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Then

Hence Q(1/¢*) € Q(¢,).

Note that p does not ramify in L/Q (via consideration of discriminants). Kummer’s
criterion implies that p is split or inert in L/Q according as (¢*/p) = +1 or —1,
respectively. (Consider z° — ¢* =0 (mod p).)

QG) — P
o]
|

Q——

Proposition 6.7(2) implies that (I, Q(¢,)/Q) |r= (p, L/Q). Now p is split or inert in
L/Q according as f, =1 or 2, i.e. according as (p, L/Q) =1 or # 1 (since (p, L/Q)
generates I'y and |I'y| = f,), i.e. according as p (mod ¢) is a square or nonsquare
(mod q), i.e. according as (p/q) = +1 or —1. Hence, equating these methods of
evaluation (p/q), we see that

()-(5)- (%) -0 ()

from Euler’s criterion.

6.3 Quadratic Reciprocity in Totally Real Number
Fields

Definition 6.10

1. Let K be a number field. We call K totally real if, for all field embeddings
o : K — C, we have o(K) C R (i.e. n = s, using the notation from the
geometry of numbers).
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2. Let z € K*. We call z totally positive if o(x) > 0 for all real embeddings o.

3. Let x € K*. We call x 2-primary if x is odd and if there exists y € K* such
that z = y? (mod* 4oy ).

Explanation.

1. x is odd means that no primes lying above 2 occur in the prime factorization
of z.

2. The congruence is to be interpreted as follows: Suppose that 40x = p7* - - - pim.
We demand that vy, (z —y*) > a; fori =1,... ,n.

Definition 6.11 Let p be an odd prime; let k = ok /p; let © € o \ p. Then

(:1:) B {—i—l if z is a square  (mod p),

p —1 otherwise.

p

1. If x =y (mod p), then (z/p) = (y/p).

2. Since k* is cyclic, (z/p)(y/p) = (zy/p).
3. (x/p) = 2WVP=D/2 (3 la Euler).

More generally, let n = py - - - p,, (where the p;’s are not necessarily distinct primes),
and suppose that (z,n) = 1. Then set (z/n) = [[~,(z/p;). We have results analo-
gous to (1) and (2) above.

We shall aim to prove:

Theorem 6.12 Let K be totally real. Let «, 6 be two odd, coprime elements of o,
and suppose that one of the is 2-primary. Then

(%) (%) (1) S =)
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where ;(a) = %, o;: K — R, and ¢;(f) is defined similarly.

Exercise. Show that if K = Q, then we recover the usual quadratic reciprocity law.

For the proof, we shall assume that o is a PID. This is to avoid excessive technical-
ities.

Definition 6.13 Let V' be a Q-vector space endowed with a nondegenerate QQ-bilinear
form (-,-) : V xV — Q. Let A C V be a lattice, i.e. A is finitely generated over Z
and AQ = V. Define the dual A* of V by A*={v eV : (v,A) CZ}.

Examples.

1. V=Q" A=12" (z,y) = x -y (the usual dot product). Then check that
A* = A, ie. Ais self-dual. If A = mZ", then A* = %A.

2. V=K, A =a (initially ox). (z,y) = Trxg(xy). By the problems, o = {z €
K | Tr(zog) CZ} = 27! (the inverse different).

Definition 6.14 (Generalized Gaul Sum.) Let ¥ = (d), and let w = b/ad, where
(a,b) =1 and a,b € ox \ {0}. Then

To(w) == Z e(Tr(a’w))

acog (mod a)

(where e(z) = e2™®).

Note. If @ = 8 (mod a), then Tr(a?w — f*w) = Tr((a — B)(a + B)w) € Z because
(a — B)w € 271 Hence 7,(w) is well-defined.

Remark 6.15 Tr(a) C Z iff Za C ok (cf the definition of the different!). We refer
to a above as the essential denominator.
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Lemma 6.16 If (a) C og, then s = ) Tr(aw)) = 0.

a€ok (mod a) 6(

Proof. Recall that w = b/ad. Thus (dw) € ok, and so applying Remark 6.15, we see
that there exists some ¢’ € (ba~'d~') so that Tr(#") & Z, so there is some 6 € ok so
that Tr(6w) ¢ Z (take 0 = ¢’ /w). Hence we have e(Tr(6w))s = > e(Tr(a + O)w) = s.
But e(Tr(Aw)) # 1, and so s = 0.

We shall now reduce the calculation of 7,(w) to the case in which a is prime. Initially,
suppose that a = ajas with (a1, as) = 1. Then og/(a) = ok /(a1) x 0k /(az) given by
x +— (xag, xay). Write w = b/ad = b/ajazd. Then

S Gl Cr))

z€og (mod a

b ay b
- T (2922 4 2%l
Ze( I'(l' &1d+$a2d

T

CLQb Cle
_ T g2 Y 2817 | 5.2 .
;e< r(m ald—l—:c a2d+ xa1a2a1a2d>)

Now 2z%ajasb/d = 22?b/d, and Remark 6.15 implies that the trace of this element is
an integer. Thus

b a b
= T 2922 247
Ta(w) E e(r(x a1d+xa2d

T

- 2 ) 2 ()

z (mod ay

= Tay (050) oy (a1w).

Lemma 6.17 Let 7 be an odd prime element of 0y, and let n > 2. Then if w = b/7"d,
we have
| N7 |/ if n is even,
Trn ((.L)) = 1)/2 1 . .
|IN7|(=D727 (77 1w)  if n is odd.
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Proof. It suffices to establish the relation

b b
Trn <%) = |N7T‘T7Tn72 (W)

for n > 2. Let x range through ox (mod 7"~ 1). Let y range through ox (mod 7).
Then

- (dzn) = ) e(Te(z + 7" 'y)w)

x?y

= Z e(Tr(z? 4 2zyn™ Hw)

x?y

= D e(Tr(@w) Y e(Tr(2ayn"'w)).

T Y

Set

S.= Y e(Tr(2a:y7r”_1w)):Ze(Tr (2;63/%)).

y€ox (mod ) y

By Lemma 6.16, S, = 0 unless 7 | x, in which case S, = |N7| (because then each
term in the sum is equal to 1). So

Tan <%) = |Nx]| - > e(Tr(zw)).

z€(m) (mod 7m—1)

Set x = wa’. Then 2’ ranges through ox (mod 7"72), and so we obtain

b b
Tpn (@) = |NT|Tpn-2 (dﬂ”2> .

The crucial link between Gaufl sums and quadratic reciprocity is given by the follow-
ing result:

Theorem 6.18 Let = € 0y, and suppose that a is odd, with (x,a) = 1. Then, with
the above notation (w = b/7d), 7,(zw) = 7,(w)(z/(a)).
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Proof. By the above work, we can without loss of generality take 7 to be prime. We
have

new = Y )= % ena{(2) 11}

acog (mod ) B€ox (mod )

(since we are only interested in squares). By Lemma 6.16,

Z e(Tr(fwx)) = 0.

So we obtain
Setting x = 1 yields

So

() < > ZeTr (Bw)) (5:6) ZeTr Brw)) (g) = 7. (2w).

B

In order to establish generalized quadratic reciprocity, we need to show the following
reciprocity relation for Gaufl sums:

Theorem 6.19 Let w = b/ad as before. For z € K*, set S(z) =Y ;. gsgn(o(z))
(called the total signature of x). Then we have the following reciprocity law for
Gauf} sums:

Tu(w) _ 1 1 mise), (=@
[Na['Z ~ (V2 IN@P2°" ™ \abd )

Proof. Needs lots of ¥ functions!!!
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6.4 Theta Functions

Lemma 6.20 Let ) denote a positive definite quadratic form on R™. Then there
exists a ¢ > 0 such that Q(x) > ¢||x||? for all x € R".

Proof. Consider the restriction @ |g» of @ to S™, the unit sphere in R". As @ is
continuous and S™ is compact, @) |s» attains its bounds on S™. Since () is positive
definite, we have @ |sn (x) > ¢ > 0 for all x € S™. The general result now follows by
scaling.

Theorem 6.21 Let () be a positive definite quadratic form on R"™. Define

To(w) = e7momen,

mezmn

This series is absolutely and uniformly convergent on R™. It is periodic on Z". Fur-
thermore, T, together with all its partial derivatives, is continuous on R".

Proof. Periodicity is plain. By Lemma 6.20, we have Q(m + u) > c|[jm + u|?
s0 e mQ(mtu) < p—mefmtul* Suppose that C' is a real positive constant, and u =
(ui,...,u,) with |u;| < C/2. Then, by the above,

6—7rQ(m+u) < e—frc(Zm?—C’Z|mi|+K)’

where K is a constant depending only upon C. Let € > 0, and take m such that
|m|| > e~!. For such m, we have the following inequalities:

| + [ma| + -+ + [mn| < Vallm] < v/ne|m|]®

(since ¢||m|| > 1). So we obtain

e~ mR(mtu) < o—nClm|*(1-Cv/ne)—nCK
By choosing ¢ to be sufficiently small, we may assume that a := 1 — C'y/ne > 0. So,
with finitely many exceptions, we have that Ty is bounded by > DemaCllmi|? (where
D = e "YK). However, this last expression is just a product of “l-dimensional”
series, which compares with a geometric series. This yields absolute and uniform
convergence of our series. [The part about partial derivatives is left as an exercise,
but here is a hint: Partial differentiation just introduces polynomials in mq,...,m,
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. _ 2
of even degree — easily “overcome” by e ™" |

Since Ty is Z-periodic and C*°, we can form the Fourier series of Tg:

To(w) = > ame™™ ™,

mezmn

where L
Um :/ To(u)e?™™ 4 gy,
0

and we have convergence at all points.

Proposition 6.22 We have

oo
_ im?-
U :/ e 7Q(u)+2mim’-u du.
—00

Proof. Using the series definition of T¢y and interchanging the order of integration
and summation (by absolute and uniform convergence), we obtain

1
_ imt-
Uy = E :/ e 7Q(k+u)+2mimt-u du.
k 0

Make the substitution u; — u; — k; (where k = (kq,...,k,)). Then

k+1
Am = Z/ e*ﬂ'Q(u)JrQﬂ”imt'u du = /OO e*ﬂQ(u)JrQﬂ'imt-u du.
k —_

k [e.9]

Now we introduce some arithmetic.

Recall. o : K — R", o(x) = (27) = (0y(x)). We now pick a Z-basis aq,...,a,
of a given ox-ideal a. Let t1,...,t, denote a set of independent, real, positive vari-
ables. Let Q = Qgq be the quadratic form given by Qi q(u) = D7 | t;2?, where
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25 = 2., 0q uq. Let A = (0i(ay)). Then the matrix A transforms Z" into o (a). Also,

det(A) = |dk/g|"/? - Na = 0 (see Proposition 5.13). We note that Qg q(u) is positive
definite.

Definition 6.23
ﬁ(ta Z, a) = TQt,a (u) (2>

(Observe that this definition makes sense since Q = Q4 is positive definite (see
Theorem 6.21).) Also observe that

ﬁ(tv z, C() = TQt,u (11)
= > exp(—mQ(m +u))

mezZnr
n 2
= Z exp | - Z t (Z agi(mg + uq)>
mezZn Jj=1 q
n 2
= Z exp | —7 Z t; (zj + Z mqozgf)
mezr Jj=1 q

Hence we have

I(t,z,a) Zexp(—th (u% + z5) ) (3)

pea

By previous work (see Proposition 6.22) we know that

am = / exp <—7r thzi + 2mim’ - u> du. (4)

o0

We wish to transform this into an integral in z-space.

Lemma 6.24 Let {f,...,3,} denote a dual basis of K with respect to the basis
{ay,...,a,}. Then {3} is a Z-basis of the ideal a=*2~! and

U = ZO-] Bk Zﬁk Z] (5>
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Proof. We know that a2~ identifies as the dual H = Homgz(a,Z) of a (via the
trace pairing). We now observe that Tr(3;, —) are a Z-basis for H. Thus indeed the
{B;} are a Z-basis of a=*2~ .

POLACEEIED BLACAD BLACHIT
= Z Tr(o,Bk)ug
= Z Oqkq

- uq.

Next, observe that for any m € Z",
m'-u= kauk = Zaj(ﬁk)mkzj = Zaj(/\)zj,
k jik J

where A = > m;8; € a7 27!, Note that as m ranges through all of Z", X ranges
through all of a=*21.

We now apply the Jacobian transformation in Lemma 6.24 to the integral

Uy = / exp (—7r thzﬁ + 2mim’ - u) du

—00

to deduce that

1
m = m/ exp (—T{'Zt 25 + 2mio (N)' z) dz. (6)
K

The following is easily checked:
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Lemma 6.25

00 00 —7A2/t

4,2 ; a2 _ _ix)2 e

/ e Ttz= 2Tz dz = e A /t/ e ﬂ't(Z 2 ) dz = ]
. —oo Vi

Applying Lemma 6.25 to each variable z; in (6), we obtain:

Theorem 6.26

i 1 )
Mt’z’a)_mydmlm\m > eXp<_W; t; 2mimu

Aea—19-1
where A = > m;[3;.

Note. Here, and in the sequel, \/t; - - - t,, = \/t1\/T2 - - - \/In. Originally, Theorem 6.26
is established only for real positive t. However, the result extends to all t € C" with
R(t;) >0 (i = 1,...,n), and where we take the branch of the square root already
chosen.

We now set z = 0 and write ¥(t,a) := 9(t,0,a). These values are known in the
literature as the ¥-Nullwerte.

Theorem 6.26 yields the so-called ¥-transformation formula.

Theorem 6.27 Replacing a by § and writing % = (%, ey i),
1 1
J(t,f) = I =7 'o7).
( 7f) /tl"'tn|dK|1/2Nf <t’f )

Corollary 6.28 (Poisson summation formula) Set t = 1. Then

1
—mQ(a) _ —mQ(B)
Z € - |dK|1/2Nf Z € )

acf Bef~1g-1
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(See e.g. Serre, A Course in Arithmetic, Chapter 7, §6, Proposition 15.)

Lemma 6.29 For each i (i = 1,...,n), let t; — 0 in such a way that R(¢; ') — +o0.
Then

1
lim v, - 6,0(t, 2, a) =

t—0 - ‘dKll/QNa'
(Observe that the right-hand side is independent of z.)

Proof. Let 7 = min(R(¢;1)). Then

exp (—7‘(‘2 ()\;)aj> < exp (—7?7“ Z()\Q)"J) .

Observe that the modulus of the left-hand side is the same as the modulus of

exp <—7TZ (A:?Uj + 27mio ()" - z) :

J

Recall that A\ = Y m;f; (with previous notation), m € Z". Thus ) .(A\*)% is a
positive definite quadratic form in the variables m;. Thus Lemma 6.20 implies that
there exists ¢ > 0 such that }-:(A\*)?% > ¢[|m[|>. Thus by Theorem 6.26,

0(t,2,0) VI, Eoldi|PNa — 1] < —14 Y e mrelml?
= ( Z e—wrcmz) ]

< (12
1_6—7T7’C

which approaches 0 as r — oc.

We next wish to relate the Gaul sum to the ¢ functions: Let w = b/ad, (a,d) = 1,
= og. Fix x = (z,2,...,2) for some x > 0. Then set t; = v — 2i0;(w). From the
definitions (see Definition 6.23), we obtain

V(x — 2io(w),0x) = Z exp (—7‘(‘ Z(m — 2ioj(w)) X aj(,u2)> :

HEOK
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Write (a) = a, (b) = b, etc. Let {p} denote a set of representatives of o (mod a).
Then write p = p 4+ v with v € a. We have

I(x — 2io(w),0x) = Y _ exp(—m(z — 2ic;(w))o;(v + p)*)

p rep
vea

= Zexp((—th co(—v+p)H) 4 2mi Tr(w(v + p)?)).

Note that Tr(w(v* + 2pv)) € Z, and so

V(x — 2o (w),0kx) = Z exp(27i Tr(wp?)) Z exp(—7x" - o (v + p)?).

P vea

Now apply Lemma 6.29 by multiplying both sides by z"/? and letting  — 0. This
yields

_ . 1 . Ta(w)
n/2 — 2)) = a4
}slir(l)l" 29(x — 2iw, 0 ) = dx[”Na gp exp(2mi Tr(wp”)) = dx[1ZNa’

We now repeat the manipulation for 9¥(t, 27'). (Hopefully, we then get our reci-
procity relationship on comparing and using the J-transformation formula.)

Let b1 = 4b and (bl) = bl.

Note. & = ;- (where w = b/ad).

Let 1 € og and set p = p+ v, where v € by and {p} is a set of representatives of ox
(mod by).

Recall. t; = z — 2i0;(w).

Note. ) . )
i

— = = ; 7

t;  x—2icj(w) 20;(w) Y (7)

)
where y; = =———%_——~. Note that R (i) = o)

20 (w)(z—2i0;(w)) T
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By definition,

9 ( ) > exp (—WZ ( > X crj(,ud_l)2> :

HEOK

Set i = p + v. As previously, we get

o(157) oo (o () st

where r = (r;) with r; = d2) Observe that
—1
"\ ddPw )

Pz
Zexp (—2m' Tr (4d2w)) =
Write 19 := 7, (ﬁ). Applying Lemma 6.28 again yields

P
lim \/ry - rp,0 = ; — (®)
r—0 "  |dk[V2Nby T\ads)

Note that Nd = |dk| and that VT \dK|V Y-

Lemma 6.30

lim L vy 1
a—0t 22 (Nd)? N(2wd)

(where w = b/ad).

Proof. Recall that y; = ngw(w» Suppose that x is small, i.e.  ~ 0. Then
J J

x 20,(w)? - 2i ~ doj(w?)  (N(2w))?’

and now the result follows.

Then applying the definition of r; and Lemma 6.30 to (8) yields

Ty

Noyde 2 [N (2wd)|. 9)

hlr(l)x"/Qi?(t Lo =
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By Theorem 6.27, we know that

1 1
: n/2 _ : : n/2 -1
lim "0t 01¢) = 17 lim e i 08, 27)

(where t; = z — 2i0;j(w)).

Lemma 6.31

tim [T] (@ = 2i0(w)) = [V (2w)]/2 x =55,
J

where S(w) = >, sgn(o;(w)).
Proof. Exercise.

So from (9) and Lemma 6.31, we obtain

Ta(w) 1 ¢35 .
- ' - | N (2wd)].
|dg['2Na  |dg|"?  |N(2w)|'/? % |Nby| |dg|1/2 [N (2wd)|
Here w = b/ad. Rewriting gives
RHS = 59 TN x |Nd
[ N (4b)
1/2
= G%S(w) 72 N 2_b /
N(4b) ad
_ e%s(“’) To '|N(2)|1/2|N(b)|1/2

N(4)N(b) |N(a)[*/2|N(d)|V/?

So the original equation becomes

Ta(w) i |IN(2) |1/2 To 1
—_— = e 4 S(O)) . X
|dk|'/?Na N(4)  [NQ)[V2N(a)|'/? "~ [N(d)V?
i.e. y
To(w) eT5Wr,

[Nal2 = (V2)n(N (40)) 2

(where 75 := 7, (1325)), and this is a reciprocity relation for Gauf sums (see Theorem
6.19).
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Lemma 6.32 The GauB sums 74 and 7, (for @ an odd algebraic integer) are both

nonzero.

Proof. Consider 74, (ﬁ). By the remarks preceding Lemma 6.17, 74, is a product
of 7, and 7,. Hence it is sufficient to prove that 74, # 0. Replace a by 4a and b by 1

in the above reciprocity relation for Gaufl sums

( 1 ) _ e TS (N (4a))H/2 ‘< (%a) |

dad) ~ T (V2)N(ab) 2

Now 7 (7‘1) = 1, and so the right-hand side is nonzero. The result follows

Proof of generalized quadratic reciprocity. Let a and (3 be two odd, coprime in-
tegers of 0k, and suppose that « is 2-primary (« is congruent to a square (mod 4ok)).

Then
() = To(0%w)Ta(F) = 75 (%) . (%) |

Applying Theorem 6.18 yields
(w) = By (e 1 1
Tap(w 3 T3 5d Ta\ 7]

Applying reciprocity to each of the three Gaufl sums yields
eS0T, (37) IN(B)[? | eT5Dmy (5) IN ()]

W () IN@B) (g) (g)
<¢§>n<N(4>>1/2 8) \e (V2)" (N (4))'/> (V2)"(N(4))'/>

Hence (%) (é) _ @ BN (57

(Z—) (57)
where v(a, 3) = exp (Z(S(afBd) — S(Bd))). Recall that « is congruent to a
square (mod 4) to deduce that

(10)




Setting a = =1 in (10) yields

T _]. -1
1=¢ 15 [ = N(8)[V/2. 13
e T\ g IN(8)] (13)

Substitute (11) and (12) into (10) and use (13) to deduce that

<%> <§) — oxp (%(5@5@ ~ S(—ad) — S(—Bd) + S(d))) |
Write A := S(afd) — S(—ad) — S(—(d) + S(d). Observe that for any «, 5,d € R*,

sgn(afd) — sgn(ad) — sgn(fd) +sgn(d) = (sgn(a) — 1)(sgn(f) — 1) sgn(d)
= (sen(0) - 1)(sn(B) — 1) (mod 8)

(just consider the different possibilities to see this). Recall that we defined ¢;(a) =
sgn(oi (o)) —
2

-1
-1

1
)= Hence
TIA

e 1 = (_1)2?:151'(@)51'([3)'

A\ (B _ s @)
(5) (7) = comteemon

and this is generalized quadratic reciprocity.

Thus

Highly Recommended Exercise. Set K = Q. Determine the signs of the Gaufl

sums 7, (%) We have shown in the problems that

T<1): +/p ifp=1 (mod 4),
"\p) |\ +iyp ifp=3 (mod4).

Find the signs.
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Chapter 7

Absolute Values and Completions

Definition 7.1 An absolute value on a field K is a function |- | : K’ — R which
satisfies the following properties:

1. Forall z € K, |z| > 0, and |z| =0 iff z = 0.
2. |ryl = |=[ - [yl
3. |z +yl < la +yl.

(We shall exclude the trivial absolute value given by |z| =1 for all = # 0.)

The absolute value | - | endows K with the structure of a metric space. Two absolute
value on K are said to be equivalent if they define the same topology.

Proposition 7.2 Two absolute values | - |; and | - |3 are equivalent iff there exists
A€ R, A >0, such that |- |, = [3.

Proof. ||, and ||} are equivalent: exercise. For the reverse direction, first note that
| - |1 is equivalent to | - | means that |z|; < 1 iff |z]y < 1 for all x € K (since |z| < 1
iff z" — 0 in the | - | topology, for any |- |). Take a fixed y € K with |y|; > 1 (such a
y certainly exists since |- |; is nontrivial). We shall show that there exists A > 0 such
that |z|; = |z|5 whenever |z|; > 1. This is sufficient: if 0 < |z|; < 1, then |zy™|; > 1
for some positive integer n. Hence |xy"|; = |zy™|3, so |z|i - |y"|1 = |z|5 - [y¥"]3, and
hence |z|; = |x|3. So suppose that |z|; > 1. Then |z|; = |y|¢ for some a > 0. Hence, if
m and n are positive integers with m/n > «, then |z|; < |y|{"", and so |2" /y™|; < 1.
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So |2"/y™|2 < 1 also, and |z]y < |y|y/". Similarly, if m/n < «, then |z]; > |y|;

Y

and this implies that |z|s > |y|72n/n. It follows, therefore, that |z]o = |y|§. Hence we

have
loglzls  loglz|;
—_— == —
log |yl2 log |y1

o ~ (log |yl 1
511 = Clogyl, ) 18

So |z|, = |2]3, with A = 281 "and this holds for all z with |z|; > 1 since X is inde-

and

log [yl2’
pendent of z.
Theorem 7.3 (Weak Approximation Theorem) Let |-|q,...,|-|s be pairwise inequiv-
alent absolute values on a field K. Suppose that xq,...,29 € K and € > 0. Then
there exists © € K such that |z — z;|; <efori=1,...,s.

Proof. Consider first the two absolute values |-|; and |-|o. Since they are inequivalent,
there exists o € K with |a|; < 1 and |a|s > 1 and 8 € K with |]; > 1 and |32 < 1.
Set y = #/a. Then |y|; > 1 and |yl < 1. We claim that we can find y € K such that

ly]1 > 1and |y|; < 1fori=2,...,s. The claim follows via induction on s; we’ve done
the case s = 2. So suppose s > 3. By our inductive hypothesis, there exists b € K
with [b]; > 1, |[b; < 1fori=2,...,s— 1. Also, since | - |; and | - |5 are inequivalent,

there exists ¢ € K such that |c[; > 1, |c¢|]s < 1. For sufficiently large r, define y by

b if [b]s <1
y=1qcb" if|bls=1

ﬁ’b if o], > 1.

This establishes the claim. Hence we can choose a; € K such that |a;|; > 1 and
|aj|; < 1 for i # j. Observe that for large r, |a%(1 + aj)~"|; is very small when i # j.
Also |a%(1 4 af)~" — 1|; is very small. Set

s a[;»
r = — | 5.
2<1+a;‘ J

J]=

This satisfies the conditions of the theorem for sufficiently large r.
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Remark. This is an analogue of the Chinese Remainder Theorem.

Definition 7.4 The absolute value | - | is called archimedian if |n| > 1 for some
element n of the prime subring of K; otherwise | - | is non-archimedian.

Equivalent absolute values are simultaneously archimedian or non-archimedian.

Examples.

1. Suppose that v is a discrete valuation on a field K (see Definition 2.14), and
choose ¢ € R with 0 < ¢ < 1. Then |z|, = £*® defines an absolute value. If
K is the quotient field of a Dedekind domain and v is a p-adic valuation, then
| - |, is called a p-adic absolute value. (Different values of € give equivalent
absolutes values.)

2. On C, the ordinary absolute value |z| = (2Z)"/2 is an archimedian absolute
value.

3. Let K be an algebraic number field, and let ¢ : K < C be an embedding. Then
|z|, = |o(z)| defines an absolute value on K.

We define the p-adic absolute value on Q by |z|, = p~%®.

Theorem 7.5 (Ostrowski) Let |- | denote an absolute value on Q. Then |- | is equiv-
alent to exactly one of | - |g or | - |, for some prime number p.

Proof. First we deal with p-adic valuations. Suppose that |n| < 1 for all n € Z.
Then |p| < 1 for at least one prime p (since | -| is nontrivial). If also |¢| < 1 for some
other prime ¢, then we can find integers a and b with [p®| < 1/2, |¢°| < 1/2, and
integers A and p such that A\p® + ug® = 1. Then
A+
1= 1] =[N + pg’| < w <1,
which is a contradiction. Hence if [p| = |p[5 (i.e. if [p| < 1), then [z] = |z[5 for all
x € Q. Suppose therefore that there exists a positive integer n such that |n| > 1 with
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In| = n®, say. Since |m| < m for all m € N (via the tr1angle inequality), we have
that 0 < a < 1. So suppose m € N, and write m = ZZ omin', 0 <m; < n, my #0.

Then
(n—1)n® (k“) n—1
< at < at < . «
|m| E |m;|n E m;n e na— Lo

ie. |m| < Cm® for all m € N, Where C' is independent of m. A similar argument,
with m replaced by m”, shows that [m| < CY/"m®. Hence we deduce that

m| < |mlg  ¥m e Z. ()

Now set m = n*™1 — b, 0 < b < n**t —p* Then [b] < [b|* < (nF+1 — nk)2, and so

ml > ™ — b
> nkJrla_(nkJrlnk)a
> e |y (2L
o n
_ Cln(k+l)a
> C'm?,

where C” is independent of m. Again, by replacing m by m”, we have that |m| >
(C"Y™m®, and so we deduce that

m| = |m[g  ¥m e Z. (1)

It therefore follows from (}) and (f) that |m| = |m|§ for all m € Z.

Very Easy Exercise. Show that |- | and all the | - |, are inequivalent.

7.1 Completions

R is the completion of Q with respect to the metric defined by the ordinary absolute
value | - |g. Q has other completions with respect to its other absolute values.

Theorem 7.6 Let K be a field with an absolute value | - |;. Then there is a field K
which is complete with respect to an absolute value |- |}, and a continuous embedding
t: K — K such that
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1. ¢(K) is dense in K.
2. For all z € K, |i(x)|] = |z

3. If (L, |- |2) is a complete field and if 0 : K — L is a continuous embedding such
that for all # € K, |z|; = |o(2)|s, then there is a unique function 5 : K — L
such that o =7 0.

K——1L

(I? .| - [1) is unique up to unique isomorphism, and it is referred to as the completion
of K with respect to | - |;.

Sketch of Proof.

1. Let R be the set of (] - |1)-Cauchy sequences in K. Then R is a ring under the
operations of pointwise addition and multiplication.

2. Let Z be the set of sequences in R which converge to zero. Then Z is the unique
maximal ideal in R.

3. Thus R/Z is a field, K, say. Define an absolute value | - |} on K by |(a,)[; =
lim,, o |@n|1. This works.

4. Definei: K — K by letting i(a) be the class of the constant sequence a,, = a.
Then |i(a)|} = |al;.

5. (I?,| -11) is complete, i(K) is dense in K, and (l?,| -|}) satisfies the universal
property (3).

[See Local Fields by J.-P. Serre.]

Examples 7.7

1. Let F be any field, and let F[X] be the polynomial ring with coefficients in F.

Fix a real number a with 0 < a < 1. Define |-| : F[X] — R by ‘2?:0 a; X' = oF
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(where a; # 0). Extend |- | to F(X) by [f(X)/g(X)| = |f(X)|/[g(X)]. Then
| -| is an absolute value on F'(X). Also, |-| is a p-adic absolute value: F[X] is a

Dedekind domain, and p = (X) is a prime ideal. The completion of F/(X) with
respect to |- | is the field F((X)) of formal power series Y>> a,X" (a, € F).

2. Let K be an extension of R which has an absolute value extending the ordinary
one. Then K =R or C. (Proof omitted.)

3. Let R be a Dedekind domain with quotient field K, and let |- | = | - |, for some
prime ideal p. Then the completion (K, |- |,) is called the p-adic completion
of K. The ideals p™ (n > 0) are a basis of open neighborhoods of zero in K.

Definition 7.8 Theorem 7.6 implies that |K|" is the closure in R of |[K|. An absolute
value | - | on K is called discrete if [ K| is a discrete subgroup of RZ,.

In this case, there is a discrete valuation v on K which is related to |- | by the formula
2| = '@ for some 0 < € < 1. (See page 63 of Frohlich and Taylor.)

If |-| is discrete, then |}? |" = | K| since | K| is already closed. Hence |-|" is also discrete.

Proposition 7.9 Let R be a discrete valuation ring, K its quotient field, m a prime
clement of R, and | - | the 7-adic absolute value on K. Let R be the closure of R in
the completion (IA( .| - |"). Then R is a discrete valuation ring with quotient field K,
7 is a prime element in ﬁ, and ﬁ/ﬂﬁ ~ R/7R.

Proof. Set a = |r|. Then |K*| = K*| = (o) < R%,. We claim that R={xe
K |z|” < 1}. To see this, note that if z € E, then x = lim,_,o x,, where z,, € R.
Hence |z|" < 1 since |z,|" < 1 for all n. Conversely, suppose that |z|" < 1. Then
r = lim, o ,, where z, € K. Since |- | is discrete, we have |z| = |z,| for all
sufficiently large n, i.e. = € R. Let a be an ideal in E, and let a € a be such
that |a|" = max{|z|' : € a}. (This maximum is attained since |a|’ is discrete and
bounded above by 1.) Suppose |a|’ = a”. If # € a, then [z77"' <1 (a = [n[), and so

7" € R, ie xR, Now [1"a™!|" = 1, som"a~! € R, som = a(r"a” YeaR Ca.
Hence we deduce that a = " R. It follows therefore that R is a discrete valuation
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ring with unique nonzero prime ideal 7R (cf Chapter 2). If # € K, then |r"z| < 1

for sufficiently large n, and so x is a quotient of elements in R. We leave it as an
exercise to show that R/TrR ~ R/mR.

Proposition 7.10 Let R be a complete discrete valuation ring with prime ideal 7R
and fraction field K. Let S be a system of representatives of R/7R in R. Then each
r € R can be written uniquely in the form r = > /s, (s, € S), and each z € K
can be written uniquely in the form z =57 s, 7" (s, € 5).

n=—oo

Proof. If x € K, then there exists an n € N such that 7"z € R; hence the sec-
ond assertion follows from the first. There exists a unique sy € S such that r = s
(mod 7K). Hence r = sg + aym, for some a; € R. Similarly, there exists a unique
s; € S such that a; = s; + asm, and so r = sy + 517 + aow?. Continuing in this
way produces an infinite series converging to r. Conversely, any series of the form

ZZOZO s, converges to an element of R such ‘Zfl\;o spm™| <1 for each N € N.

In the case of residue characteristic p, it is easy to do more.

Proposition 7.11 Let K be a field complete with respect to a discrete valuation.
Let R be the valuation ring, and let k& be the residue field. Assume that k is perfect
of characteristic p > 0. Then there is a unique system of representatives S of k in R
with the property that SP = S, and this system is multiplicatively closed.

Proof. Let p be the maximal ideal in R. View elements of k£ as cosets of p in R.
Suppose a € k. Then o? " € k for each n € N, since k is perfect. Let a, € R be any
representative of a? . Then a?" € « for each n € N.

We claim that the sequence (af") converges in R. For al,, and a, both represent
o? " and so al,; = a, (mod p). Hence aﬁyj: = a?" (mod p™*!). Thus (a?") is a
Cauchy sequence and so converges to a limit a, say. Since a = ay (mod p), it follows

that a € a.
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We must now show that the element a is independent of the choices of a,, € o . If
(al) is another such sequence, then a, = a/, (mod p), and so (a/,)?" = a?" (mod p").
Hence

d = lim (a,)”" = lim a? = a.

n—oo n—oo

Let S be the system of representatives obtained by this procedure. We first show
that S is closed under multiplication. If a = lim,, .., a?" and b = lim,_., b*", then
ab = lim,, . (a,b,)P". Also, aP is represented by a?. Since kP = k, it follows that
a? = a, and so SP = S. We must now show that S is unique. Suppose that S; is
another system of representatives of k£ such that SY = S. Let ap € Sy represent « € k,
and let a, € S; represent o . Since S = S, we have that a?" = ag for all n € N.
So ag = lim,,_,, a?", which implies that ag € S, and so S; = S.

Corollary 7.12 Suppose also that char(K) = p. Then S is a subfield of K which is
isomorphic to k.

Proof. Since (a, + b,)?" = a?" + bE", it follows that S is closed under addition.

Remarks.

1. If char(K) = p, Corollary 7.12 implies that K ~ k(()).

2. S is often referred to as a system of Teichmiiller representatives (cf. the theory
of Witt vectors in e.g. Serre’s Local Fields).

Example 7.13 Let Q, denote the completion of Q with respect to the p-adic absolute
value given by |z| = p~%®), Qy is called the field of p-adic numbers. The closure Z,
of Z is Q, is called the ring of p-adic integers.

1. Every p-adic integer has a unique representation of the form a = " >° ja,p",
0<a,<p-—1.

2. Multiplicative system of representatives: The residue field of Q, is F,,. Suppose
¢ € S represents a € F,, a a primitive (p — 1)™ root of unity. Then (P = ¢,
and so pp—1 C Zyp. p1,—1 U {0} is the multiplicative system of representatives.
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3. Q) = (p) XZ) = (p) x () x (1 +pZ,). This has a filtration. Let U, = 1+p"Z,.
Then Uy D Uy O -+, and (), U, = 1. We claim that (1 + p) is dense in Uj.
First observe that 1+ p" = (1+p)"™ (mod p"*!) (an easy proof by induction),
and so

L+bp" = (1+p)"""  (mod p™th). (%)

Now suppose a € Z, with @« = 1 (mod p), and suppose inductively that a =
(1+p)*® (mod p" ') (x € Z). Then a(1+p)~* =1 (mod p" '), ie.

a(l+p) @ =1+bp"" (modp") = (1+p)* " (mod p")

(from (%)). Hence a = (1 + p)***"* (mod p"). So, given any positive integer
n, there exists y € Z such that a = (1 + p)¥ (mod p"), i.e. (1+ p) is dense in
U.

Terminology. We say that 1 + p is a topological generator of U; and that U; is
topologically cyclic (cf p-Adic Numbers, p-Adic Analysis, and Zeta Functions by N.
Koblitz). See “An Introduction to the Theory of p-Adic Representations” by Laurent
Berger (available at http://www.ihes.fr/~1berger/dwork/dworksmf . pdf).

7.2 Extensions of Absolute Values

First we need a preliminary result.

Lemma 7.14 Let K be a field which is complete with respect to an absolute value
|- |1, and let V' be a finite dimensional vector space over K. Then all norms on V' are
equivalent. (Two norms ||-||; and || -||2 are equivalent if there exist positive constants

C1 and Cy such that || - |1 < Cif| - []2 and || - [ < Cal| - [|1.)

Proof. Let {a1,...,a,} be a basis of V over K, and let || - || be the sup norm with
respect to this basis. Let |- | be any other norm. Suppose z = x1a1+ -+ 2,0, € V.
Then

|z = Jzran + -+ o] < (n-sup o)) - 2] = Cfl]),
say. Hence the norm |- | is continuous with respect to || - ||. The unit sphere with
respect to || - || is compact, and so |- | has a minimum on this unit sphere, at v, say.
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So |v| < |z| for all x € V such that ||z|| = 1. Now suppose that y € V', y # 0, and
write y = y1a1 + -+ + Yo, ¥ € K. Let j be such that |y;|; = max; |y;[i = ||ly]|.

Then we may write y = y;x with ||| = 1. We have
y|_ Iyl _ 1yl
ol <ol = | 2] = 14— W
Yj lyile ]

So |v] - |ly|]| < |y|. The result follows.

Remark. It follows that V' is complete with respect to the sup norm and so is com-
plete with respect to any norm. In particular, we may take V' to be a finite extension
of K.

Proposition 7.15 Let K be a field which is complete with respect to an absolute
value | - |, and let £/K be a finite extension. Then any extension of | - | to F is
uniquely determined. In particular, if ¢ : E — oF is an isomorphism of E over K,
then |oal = |af for all a € E.

Proof. Lemma 7.14 implies that all extensions of |- | to E are equivalent. Since any
two such are positive powers of each other, and since they coincide on K, it follows
that they must be equal.

Now we apply this. The p-adic valuation on Q is given by |p"m/n|, = 1/p" for r € Z,
(mn,p) = 1.

Recall. If o0 is a discrete valuation ring with maximal ideal m and quotient field K,
then suppose that m is generated by m. Every a € K (a # 0) can be written in the
form o = 7"u, r € Z, u € 0*. Define |a| = ¢" (for some fixed 0 < ¢ < 1). This gives
an absolute value on K.

Now suppose K is a number field with ring of integers ox. Let p be a prime ideal of
oxg with pZ =pN7Z. Let m € o have order 1 at p; then p = 7°u, e > 0, v a unit at
p. Set f = f, = [(ox/p) : (Z/pZ)]. Then Np = |ox/p| = p/. We have two absolute
values on K determined by p:
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L. |P|p =1/p, |7T‘p = 1/171/67

2. |[7llp = 1/Np.

For any a € K, a # 0, we have ||a|, = |a\§"f'°. Of course, this can be generalized:

L—P
K——7%
Let IT € L be an element of order 1 at 3. Then poy, = PFP and |r|y = |H|;§q3lp).

Definition 7.16 Let K be a number field. The set of absolute values consisting of
the p-adic absolute values and of the absolute values induced by embedding K in C
or R is called the canonical set of absolute values and is denoted by Mk. IF E/K
is a finite extension, then any absolute value w on E extending an absolute value
v € M lies in Mg, and we write w | v.

Any two distinct absolute values in My induce distinct topologies on K.

If v € Mg, then we write K, for the completion of K with respect to v. K, is called
a local field.
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OE/Q3 — OE,w/mw

]

Ok /P ——>0K.0/Po

Remarks. Let K, denote the closure of K in F,. Then FK, is a finite extension
of K,, and FK, C E,. Since FK, is complete and dense in FE,,, it follows that
FK,=F,.

Theorem 7.17 Let E/K be a finite extension of number fields, and let v € M.
Then two K-embeddings 0,7 : E — K give rise to the same absolute value on E iff

they are conjugate over K, (i.e. iff there exists an isomorphism A : cE- K, — 7E- K,
such that A\g, = id).

Proof. Suppose that the two embeddings are conjugate over K,. Then Proposition
7.15 implies that the induced absolute values on E are equal. Suppose conversely
that the two absolute values are equal, and let A : 7T/ — oF be a K-isomorphism.
We show that A extends to a K,-isomorphism A\ : 7F - K, — oF - K,. Now suppose
r € TE - K,. Since TFE is dense in 7F - K,, we may write x = lim,,_.o, 7,, where
x, € E. Since the absolute values induced by ¢ and 7 on E coincide, it follows that
the sequence {Arx,} = {ox,} converges to an element \x € oF - K,. Then Az is
independent of {z, }, and the map A\ : 7TE- K, — o E- K, z — Az, is an isomorphism.

Now we understand the extensions of v to E.

Corollary 7.18 Let K be a number field, and let F/K be a finite extension of degree
n. Suppose v € M. For each absolute value w on F extending v, and let n,, be the
local degree, i.e. n, = [Fy, : K,]. Then > n, = n.

wlv

Proof. Let F = K(«), and let f(X) be the minimal polynomial of a over K. Let
f(X) = fi(X)--- fs(X) be the factorization of f into irreducible polynomials over
K,. An embedding F — K, corresponds to a choice of root of f in K,, and two such
embeddings are conjugate over K, iff the chosen roots belong to the same factor f;(X).
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Hence s is the number of distinct extensions of v to E, and }_,,, n, = [E: K] = n.

Corollary 7.19 Define 0 : E®y K, — [],,, Ew by 0({®a) = (la, la, ..., la). Then
0 is an isomorphism.

Proof. The weak approximation theorem (Theorem 7.3) implies that the image of
o is dense in Hwh) E,,. Since the image is also closed, it follows that o is surjective.
Hence Corollary 7.18 implies that ¢ is an isomorphism.

Corollary 7.20 Let v € M, and for each w | v, let N,, : E,, — K be the local norm
and Tr, : E, — K, the local trace. Then, if « € E, Ng/k(a) = [[,, Nw(c) and

Trpic(a) = ¥, Trula).

w|v

Proof. Follows immediately from Corollary 7.19, together with the definitions of
norm and trace.

Corollary 7.21 Notation as in Corollary 7.20. Then [],, e[ = [Np/r()lo.

Proof. Exercise.

Definition 7.22 Let K be a number field, and let E/K be a field extension of degree
n. Suppose v € M. Say that v splits completely in F if there exist precisely n
extensions of v to E.

Remark. Theorem 7.17 implies that v splits completely in E'iff every K-embedding
o:F — K, maps F into K,, i.e. if 0(F) - K, = K,.

Theorem 7.23 (Hensel’s Lemma) Let K be a field which is complete with respect
to an absolute value | - |, and let oy denote the valuation ring of K. Let f(X) be
a polynomial with coefficients in ox. Let ag € ox be such that |f(ao)| < |f/(c)]*.
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Then the sequence o1 = a; — ]{,((Zi_)) converges to a root a of f(X) in ox. Further-

f(ao)
f’(ao)Q

< 1.

more, |a — ag| <

Proof. Set ¢ = |f(a)/f (ap)?] < 1. We show inductively that
(i) |y < 1.
(ii) |a; — ag| <.
(iii)

These conditions imply our proposition. If ¢+ = 0, the conditions are our hypotheses.
By induction, assume the conditions for i.

(i)’

(i1)” Jaitr — o] < max{|aipy — aif, [oi — aol} = ¢

< 2.

f(ai)

flew)
f/(Oéi)2

< 2 implies that |1 — a;] < 2 <1 and so || < 1

(iii)” Taylor’s Theorem implies that we have

. — fla) — (s f(a) fla) ?
Flaww) = fla) = Fla) T 4 5 (10}

2

Jles) 17 Also, we have, for some 7 € o,

I (ei)

1. _ /a/‘_f(ai)' — s _f(ai)
Plaww) = Fla) = 5% o = pra (1- 120,

and so |f'(a;11)| = | f'(cw)|. Putting everything together gives

B € ok, and so |f(ait1)] <

| flait)] < JJ:’<(ZZ)) < |f ()|
Hence i ) Fa)
Qit1 (673 91 9i+1
f(@itr) ‘S f(ai)? c=c
Examples.

85



1. In Qy, the equation 2 + 7 = 0 has a root. (In fact, for any v € Zy with y =1
(mod 8), the equation z? = 7 has a root.) Take ap = 1 in Theorem 7.23.

2. In Theorem 7.23, let p denote the maximal ideal of 0, and suppose that f(ag) =
0 (mod p) but f'(ag) # 0 (mod p). Then the theorem applies. (This is the
trivial case of Hensel’'s Lemma.)

3. Every unit of o sufficiently close to 1 has an m' root if m is not divisible by
the characteristic of K. (X™ —u =0, ag = 1 provided that |u — 1] < [m|*.)

The following result is useful in determining extensions of K.

Proposition 7.24 (Krasner’s Lemma) Let o, 3 € K, and assume that « is separable
over K(f3). Assume that for all K-isomorphism o of K(«) (with o # id) we have
|f — a| <|oa —al. Then K(a) C K().

Proof. It suffices to show that any K () isomorphism 7 of K («, 3) also fixes a. By
Proposition 7.15, we have |3 — a| = | — T7a| < |oa — a]. Hence we obtain

T —al =|ra— [+ —a| < |oa—af

for all o # id. This implies that 7 = id, and hence K(«, 5) = K ().

7.3 Nonramified and Tamely Ramified Extensions
Let K be a field which is complete with respect to a discrete absolute value | - | as-

sociated to a valuation vk, 0k its valuation ring, and p its maximal ideal. Assume
k := og/p is finite. m € p with mox = p is a uniformizing element.

Suppose L/K is a finite extension.

kL B

L
K——k p
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We have [L : K| = f(L/K)e(L/K). We say L/K is totally ramified if [L : K| =
e(L/K). Then f(L/K) =1, ie. k; = k.

A monic polynomial g(X) = X™ + a,, 1 X™ '+ + a1 X + ap € 0g[X] is called an
Eisenstein polynomial if a; € p for all j and a & p*.

Theorem 7.25
(a) The following are equivalent:

(i) L = K(X), where X is a root of an Eisenstein polynomial g(X).
(i) L/K is totally ramified.

(iii) oy = ox[A] for a uniformizer A of o.

(b) If (i) holds, then A is a uniformizer of oz, and deg(g(X)) = [L : K], so g(X) is
irreducible over K.

(¢) The minimal polynomial over K of a uniformizing parameter of a totally rami-
fied separable extension L of K is an Eisenstein polynomial over K.

Proof. We first show (i) implies (ii) and (b). Let g(X) = X" 4+ b, 1 X"  + -+ + bp.
Then A € oy, and so \" = — Z;L:_Ol bjN € poy. Hence v, (A\) > 1. Now v (A" + by) =
v, (— Z;:ll bj)\j> > 1+ e(L/K), and vi(by) = e(L/K), and so we must have
v (N") = e(L/K). Therefore [L : K| > e(L/K) = nvg(\) > n = [L : K|. Hence all
these inequalities are in fact equalities, and we have e(L/K) = [L : K], so L/K is
totally ramified. Since n = [L : K|, g(X) is irreducible. Since nvg(A) =n, vp(A) =1,
i.e. A is a uniformizer.

Now we show that (ii) implies (iii). Suppose L/K is totally ramified. Then kj, = k, i.e.
0/B ~ o /p. Let S C o be a set of representatives of oy, /P. Suppose that A is a uni-
formizer of L. For h =i+e; (e =e(L/K), 0 <i <e), set Ay = A7/ (7 a uniformizer
of K). Then every element of o, may be written uniquely in the form >, s\,
(sp € S) (cf the proof of Proposition 7.2). Collecting and rearranging terms, it fol-
lows that every element of 0, may be written in the form > 7" a;\" € ox[)]. Since
ox[A] C or, we deduce that ox[\] = op.
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Now we show that (iii) implies (ii). Suppose that o, = ox[A], A a uniformizer
of L. Reducing modulo P gives o, /P =~ og/p, and so f(L/K) = 1, whence
e=e(L/K)=IL: K], ie L/K is totally ramified.

Finally we show that (ii) and (iii) imply (i) as well as (c¢). Assume (ii) and (iii). Then
we may write A\* = 3.7 ¢;\" with ¢; € og. Then vy (A — ¢o) > 1, 50 vp(co) > 1, 50
vi(cg) > 1, s0 vr(co) > e. Similarly, vy (A —coerA) > 2, 80 v (cy) > 1. Continuing in
this way, we have that vk (c;) > 1for j =0,1,...,e—1. Therefore v, (A\°—cp) > e+1,
and so we must have vy (co) = e, i.e. vg(co) = 1. Hence g(X) = X¢ — Z;;é c; X" is
Eisenstein. Since the choice of A in the proof of (ii) implies (iii) was arbitrary, (c)
follows also.

Corollary 7.26 Let F' denote an algebraic number field. Suppose that g(X) € o[ X]
is such that g(X) is Eisenstein in F,[X] for some prime p of op. Then g(X) is irre-
ducible in F[X].

Proof. By Theorem 7.27, g(X) is irreducible in F,[X]. Hence g(X) is irreducible in
FIX].

Example. Let p be a prime and n € N. Consider the cyclotomic polynomial in

QP[X]:

Xr" —1 - - .
CI)p"(X):W:Xp -1 oxrt T e-2) o X

The roots of ®,.(X) are the primitive (p")™® roots of unity in Q,. Set g(X) :=
®,n (X + 1); then g(X) = XP" 'Y (mod p). Since g(0) = ®,.(1) = p, it follows
that g(X) is Eisenstein. Set K = Q,(¢), ¢ a primitive (p")™ root of unity. Then

(a) K/Q, is totally ramified of degree p"~*(p — 1).

1. 0K = ZP[C]

2. 1 —( is a uniformizer of K.
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7.4 Unramified Extensions

Let L/K be finite, separable, and algebraic.

Proposition 7.27

(i) Suppose L/K is unramified. Then there exists x € oy such that kp = k(Z).
Suppose that x is such an element, and let g(X') be its minimal polynomial over
K. Then oy, = oklz], L = K(z), and g(X) is irreducible and separable over k.

(ii) Suppose that g(X) is a monic polynomial in 0x[X] such that g(X) is irreducible
and separable over k. If = is a root of g(X), then L = K(x) is unramified over
K, and kr, = k(7).

Proof.

(i) If k1, /k is separable, then k;, = k() for some = € oy. Let G(X) be the minimal
polynomial of Z over k. Then G(X) is separable, and we have

[L: K] >degg(X)>degG(X) = [k : k| =[L: K].

Hence G(X) = g(x), i.e. g(X) is irreducible and L = K (z). We leave it as an
exercise to show that o, = ox|[x] (cf the ideas involved in the proof of Theorem
4.10).

(ii) Observe that we have [L : K] = degg(X) = [k(Z) : k] < [k : k] < [L : K].

Hence

(@) [L: K] =[ky: k] = f(L/K),ie. e(L/K)=1,
(b) kr = k(Z), i.e. ki /k is separable.

Theorem 7.28 Let ¢/k be a finite separable extension. Then there exists a finite
separable extension L = L(¢) of K such that

(i) £~ kg (over k).
(ii) L/K is unramified.
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(iii) The natural maps Homg (L, L") — Homy(ky, kz/) are bijective for all L'.

Proof. We have ¢ = k(&). Let G(X) be the minimal polynomial of & over k. Then
G(X) is separable. Choose any monic polynomial g(X) € ox[X] with g(X) = G(X).
Let L = K(x). Then Proposition 7.27 implies that L satisfies (i) and (ii) (cf Propo-
sition 7.27). Now consider any k-homomorphism « : k; — kp. The trivial case
of Hensel’s Lemma implies that L’ contains a unique element y such that g(y) = 0
and ¥ = «(Z). Then there exists a unique homomorphism «; : L — L’ such that
ay(r) =y, and clearly a; = a. If 3 : ky, — kp/ is such that 3(z) = g, then 3(z) = v,
so 3= aj.

Corollary 7.29 L({)/K is normal iff £/k is normal. If this is so, then Gal(L(¢)/K) ~
Gal(¢/k). (Of course, the point here is that we are not assuming that k is finite.)

Theorem 7.30 Let L/K be a finite extension. Then L has a subfield Ly D K
such that the subfields L' O K of L which are unramified over K are precisely
the subfields of Lo. Also, kr, = k7", the separable closure of k in k. If L/K
is normal with Galois group T, then Lg/K is normal, and L is the fixed field of
Io={y el :v(y(x)—z) >0foralx € op}. (I'gis called the inertia group of
L/K.)

Proof. Theorem 7.28 implies that there exists a subfield Ly D K of L with Ly/K
unramified and kg, = k7". All subfields of L, are unramified over K. Suppose con-
versely that L' is a subfield of L, with L'/K unramified. Setting ¢ = k. in Theorem
7.28, we obtain a K-homomorphism o : L' — Lo so that ¢ : kp — kr, = k7" is
the inclusion map. Let k;, = k(Z), with « € o,. Then z and o(z) are elements of L
with the same residue class. Hence (by the trivial case of Hensel’s Lemma) o(z) = =z,
i.e. x € Ly. Hence by Proposition 7.27, L'’ = K(z), and so L' C Ly. Now suppose
that L/K is normal. Then the conjugate fields of Ly in L are all unramified over K.
Hence they coincide with Ly, and so Lo/K is normal. Observe that, by definition,
'y is the kernel of the homomorphism I' = Gal(L/K) — Gal(kr,/k) ~ Gal(Ly/K)
(from Theorem 7.28).
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Corollary 7.31 The compositum of two unramified extensions of K in a separable
closure of K is unramified.

Corollary 7.32 Let K, be the union of all unramified extensions L/K in a given
separable closure of K. Then every finite extension of K in K\, is unramified. We
have that Gal(Ky,/K) ~ Gal(k*P /k).

Example. Suppose that k is a finite field of characteristic p; |k| = ¢ = p™, say. Let
7 be the completion of Z with respect to the topology defined by the subgroups nZ
(n >0). (SoZ =1]],Zy.) Then Gal(k*®/k) ~ Z under the map v — wy (v € Z),
where wy(a) = o (for all @ € k*P). So we deduce from Theorem 7.28 that there
exists a unique element o, € Gal( Ky, /K) with the following property: If L is a sub-
field of Ky, /K, then for all a € o7, we have o,(a) = a? (mod pr). The map v — o}/
is an isomorphism 7 = Gal(Kyun/K) of topological groups. Hence for each integer
n > 0, K has exactly one unramified extension L of degree n. L/K is normal and
Gal(L/K) is cyclic. Furthermore, Proposition 7.27 implies that K\, is the union of
the fields of m®™ roots of unity (in a given separable closure of K) for all m coprime
to p.

7.5 Tamely Ramified Extensions

Definition 7.33 Let L/K be a finite extension with char(k) = p. We say that L/K
is a tame extension (or that L/K is tamely ramified) if p { e(L/K).

or

L——%
ok — K —9Pp

Theorem 7.34 ¢! divides the different Z(L/K). Furthermore, the following con-
ditions are equivalent:



(a) L/K is tame.
(b) Trr/k (o) = ok.
(c) 2(L/K) =P

Proof. Choose N D L with N/K finite Galois, and let q be the unique prime
of N lying above B. Then if a € L, Try/x(a) = > ., ya’ If a € B, then
Try k(a) € gN K = p. Hence Trp x(P) C p. Thus we have Tr(Pp~') C ok, and so
Pp~! =P C 27Y(L/K). Hence it follows that Z(L/K) C P!, as asserted.

We now show that (b) is equivalent to (c). Suppose that Trp x(0r) = ox. Then
Tr(p~toz) = p~', and so we have

plor=P 22 (L/K) 2P

This implies that 2(L/K) = B¢, since Z(L/K) is an or-ideal. Suppose conversely
that Try,/k(0r) C p. Then Trp x(p~tor) C ok, and so p~' =P C 7 1L/K), ie.
P | 2(L/K).

We now show that (a) is equivalent to (b). We begin with a preliminary observation.
Let M be the maximal unramified extension of K in L. Then Try;x(on) C ok.
Also if a € oy, then Tryyx(a) = Try,,x(a). Since ky/k is separable, we have
Try,, (k) = k. It follows from Nakayama’s Lemma that Try x(0a) = 0x. Hence
it suffices to prove that (a) is equivalent to (b) in the case that L/K is totally ramified.
So assume L/K is totally ramified. Then o, = ox + P (from Theorem 7.25), and
hence

OK 1fp)(67

TI"L/K(UL) = TTL/K(UK) + TTL/K(‘B) =e0x + TTL/K(‘B) = {C poifp|e

Corollary 7.35 If L/K is tame, Trz k() = p.
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Proof. Suppose that p = mox. Then

TrL/K(‘B) 2 TrL/K<7TOL> = 7TTI"L/K(UL) =Tog = P.

Since also Trz,x(PB) C p, the result follows.
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Chapter 8

Zeta Functions and L-Series

8.1 Asymptotic Estimate for the Number of Ideals
in an Ideal Class

Problem. Let K be a number field, and suppose that Y is an ideal class of K. Find
a formula f(Y,t) for the number of integral ideals in Y of norm at most t.

Motivating Example. Let K = Q(i). Let R be a region in the plane, bounded by
a simple smooth curve C' of length L. Let A be the area of R and a(R) the number
of lattice points in R.

Claim. A is approximated by a(R) in the sense that |A — a(R)| < 4(L + 1), i.e.
A=a(R)+ O(L).

[Recall. f = O(g) iff there exists a constant C' such that | f(¢)| < Cg(¢) for all ¢ > 0.]

Proof. To each lattice point, associate the square of side 1 of which the point is the
lower left vertex. Let a(C') denote the number of these squares which meet the curve
C. Then a(R) — a(C) < A < a(R) + a(C), so |A — a(R)| < a(C). Now an arc of
length 1 can meet at most four squares; hence C' meets at most 4(|L| +1) < 4(L+1)
square. Thus |A — a(R)| < 4(L + 1), as asserted.
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Now suppose that R is the region enclosed by a circle of radius v/t centered at the
origin. A lattice point (z,y) is in R iff 22 4+ y* < t. Hence we have

Z 1=t +O(Vt). (%)

x2+y?<t

[Remark. In (x), it doesn’t matter whether we sum over z* + y? < t or x? + y* <t
since the number of lattice points on the circle is O(v/).]

The left side of (x) is the number of Gaussian integers = + iy of norm less than t.
Note that every ideal in Z[i] is principal, and |Z[i]*| = 4. So, to count integral ideals
rather than integers, we just need to divide by 4, and we obtain

> 1:Z+0(¢%).

{a:Na<t}

Remarks.

1. The general case is more complicated because K may have an infinite number
of units.

2. We will need to be able to approximate the volume of a domain D in R" in
terms of the number of lattice points in D and the volume of a fundamental par-
allelepiped of the lattice in question. (In the example, the lattice was the usual
lattice in R2.) To do this, we have to show that the number of lattice points
on the boundary 0D or D has a lower order of magnitude than the number of
such points in D. This works if 0D is described by a piecewise continuously
differentiable map on [0, 1]"~! C R™ (cf the example).

Definition 8.1 Let (L;,d;) and (Lo, dy) be metric spaces. A function ¢ : Ly — Ly is
called a Lipschitz map provided that

(a) ¢ is continuous.

(b) There exists C' € R such that for all x,y € Ly, da(é(x), ¢(y)) < Cdy(x,y).
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A subset X C R” is said to be k-Lipschitz parametrizable if there is a finite col-
lection of Lipschitz maps ¢; : [0,1]¥ — X such that each # € X lies in the image of
at least one ¢;.

Notation. For any subset D C R™ and any ¢t € R, let tD := {tz : x € D}.

Proposition 8.2 Let D be a subset of R", and let L be a lattice in R™. Assume that
0D is (n — 1)-Lipschitz parametrizable. For each t, let A(¢t) = |[tD N L|. Then

A(t) = (\\//21112) o).

Proof. Let P be a fundamental parallelepiped for L. For ¢ € L, let P, :== {p + { :
pe P} ForteR set b(t)=|{{ € L:P,NID # @}|. Then

(A(t) — b(t)) VOI(L) < Vol(tD) < (A(t) + b(t)) Vol(L),

" I\(t) Vol(L) — Vol(tD)| < b(t) Vol(L),

and so it follows that

() — lel((lz)) | < b(t).

So we have to estimate b(t) as t — oo. Let ¢ : [0,1]""! — R™ be one of the maps
which parametrizes 0D; then t¢ parametrizes the corresponding part of d(¢D). For
a given t > 1, divide [0,1]""! into cubes of edge 1/|t] (so there will be [¢|""! such
small cubes in [0,1]"7!). Since ¢ is Lipschitz, there exists a constant C; such that
the image of each small cube has diameter at most C;/|t|. Thus the image under t¢
of one of these cubes has diameter at most tCy/[t] < Cy for some constant Cy. The
number of points £ in which P, can intersect a set of diameter at most C is bounded
by a constant Cy, say. Set C' =3, Cy. Then b(t) < C[t|"~" < Ct"', as required.

Now recall some basic facts concerning the geometry of numbers: let K be a number
field, n = [K : Q)], 01, ..., 0., real embeddings of K, and 0, 11, ..., O trgs Tryt1s -« - s Oyt
complex embeddings of K. Let o : K — R™ x C™ be given by

T <01($), sy Opy (‘7;)7 0-7"1+1<I>7 <oy Orydrg (Z‘))
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For each i, define | - |; by

2 = {|0,(:17)| fori=1,...,r,

los(z)]? fori=r+1,...,r +re.

There is a norm map N : Rt x C™ — R given by N (&) = [[}21"*|&;. Observe that
we have N(o(z)) = |[Nk/g(x)| for z € K. Define local degrees

I 1<i<r,
i = )
2 Mm+l1<i<r;+rs.

Then n = > n; =1 + 2rs.

We define the homogenized logarithm map g : R x C™ — R™1"2 by

|&il:
—|...,lo ol I I
¢ < : [N(ew )

K> TR X =R

R+ .= &

For € € 0 we have N(o(¢)) =1, and so £(¢) = (log |o1(e)|1, - - -, 10 |Tr 41y () |1y 42 )-

Dirichlet’s Unit Theorem. £(o0}) is a full lattice in the hyperplane

ri1+r2
H—{XEX: in—O}.

i=1

Let €1,...,&, (r =7, + 79 — 1) be a set of fundamental units of K. Set y® := £(e;).
Then {yW,...,y™} is a basis of £(0}). We first calculate Vol(£(0x)). Set y©@ =
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((ry + 7)™ Y2, .. (11 +72)7Y2). Then ||y®| = 1, and y© - H = 0. Thus the r-
dimensional volume of o} is the (r + 1)-dimensional volume of the lattice generated
by y @, y® ..y Thus

— 1 r
(ro4r) ™2y
Vol(oy) = |det : : : 5
- 1 T
(Tl + TQ) 1/2 yr(’lzrrg e y1(”1)+7"2
where yj(i) = log|o;(ei)|;- Add the sum of the remaining rows to the first row

and use the fact that > yj(.i) = 0. This yields Vol(o}) = (r1 + r2) 2Ry, where
Ry = | det(log |o;(e:)];)|-

Definition 8.3 The regulator Ry of K is the absolute value of the determinant of
any r x r minor of the matrix (log|o;(g;)];) (1 <1 <7, 1<j<r; +mr).

Now let Y be an ideal class in K, and let f(Y,t) denote the number of integral ideals
aeY with Na <.

Theorem 8.4 f(V,t) = pt + O(t'~+), where

. 2" (QW)TZRK

where n = [K : Q], w is the number of roots of unity in K, and d is the discriminant
of K.

(Note. The result is independent of Y".)

Preliminary remarks prior to the proof.

1. Observe that o acts on Z: u-& = (01(w)&1, - - ., Opytry (W)Er 4ry). A fundamen-
tal domain in % (for the action of 0}) is a set of representatives of the orbits
of 05 which is also measurable (and may be required to have other properties).

2. Suppose b € Y~ (b an integral ideal). Then a € Y iff ba = (), a principal
ideal. N(a) < tiff [N(z)] < tN(b). Suppose that D is a fundamental domain
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in Z, and set D(s) :={& € D| N(&) < s}. Then f(Y,t) = |o(b) N D(tN(b))],
i.e. for any a € Y, there exists exactly one generator x of the ideal ab for which
o(x) € D; conversely, if o(z) € o(b)ND(tN (b)), then (z) = ab for some a € Y
and Na < t.

3. Suppose we can construct D with the property that sD = D for all s > 0.
Then D(s) = s/"D(1). (If & € D with N(§) < s, then £ = s'/"n, with
N(n) < 1, and conversely.) Set A(s) = [sD(1) N o(b)|. Then (2) implies that
fY,t) = M{tN(b)}'/™). If also OD is (n— 1)-Lipschitz parametrizable, then we
can apply Proposition 8.1 to express f(Y,t) in terms of Vol(D(1)) and Vol(a(b)).

4. In fact, we will construct a fundamental domain for (e1,...¢,), where 4, ..., ¢,
are a set of fundamental units of oj. Now |0k : (e1,...&,)] = w. Hence for
such a D, we have

wf(Y,t) = A((EN(b)V™)
Vol D(1) 1—1
= ———— 2 .tN(b O((tN(b n
Vo)V (0) + 0N @) )
Vol D(1) 1-1
Vo(p) N0+ O
So we have to construct a domain D such that sD = D for all s > 0 and 9D is
(n — 1)-Lipschitz parametrizable.

Proof of Theorem 8.4 We first construct D. Recall that r = r; + 79 — 1. Let
{e1,...,&,} be a set of fundamental units in K, V := (e1,...,¢&,), ¥V := £(5;) € 2,
P = {Z;l ciy® 0 < ¢ < 1 for all z} Then P is a fundamental parallelogram in
H for the lattice £(0)). Now set D =g~ '(P)NZ*.

We now claim that D is a fundamental domain for the action of V' on #. Suppose
& € #%; then g(€) € H (from the definition of g — this is why we homogenize the
logarithm map!), and so g(€) = > c¢;y™, with the ¢; € Z uniquely determined. Set
di = ¢ — ¢, v= Hs}cu. Then g(¢ -v!) = Y. diy® € P,ie. v'€ € D. So the
orbit of & meets D. Suppose now that n € D, v = Hs?i, and vn € D also. Suppose
g(n) = Y ay®. Then g(vn) = > (a; + h;)y®, and so we must have h; = 0 since
h;€Z,0<a; <1, 0<a;+h; <1. Hence v =1, and so D is a fundamental domain,
as claimed.
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We now claim that for s € R, s # 0, we have sD = D. This follows from the fact
that g(s&) = g(&) for all £ € Z.

We now claim that D(1) is bounded. Suppose that & € D(1). Then & = (&1, ..., &)

and N§ < 1. Then

|Enn
Write g(¢) = Y ey™, 0 < ¢; < 1, and suppose that y@ = ( Y),...,yﬁ?Jm). Set
M = maX{]y§Z)| 11 <i<ri+ry—1, 1 <j <ri+ry}. Now equate the ht? coefficients
for g(&); this gives log |1\/E|hn|z/n => cl-y,(f), and this implies that |&,[, < e(F72=DM,
Hence D(1) is bounded.

We now calculate Vol D(1). Let r = r; 4+ ro — 1. Introduce polar coordinates on %Z*.
Let & = (pi,0:), (i = 1,...,7+1). Then p; > 0 for all i, §; = £1 (i = 1,...,1),
and 0 < 60; (i =7 +1,...,r; +12). In these coordinates, D(1) is described by the
following conditions:

1. 0 <JIpi" <1 (this expresses the condition N& < 1).

2.
r+1

1 I
log p; — EHPiz = Zcqbg'%’(ftz”»
i=1 g=1

0<¢,<1,¢g=1,...,r. (This expresses the condition that g(§) € P.)

(These conditions don’t involve any of the angles 6;.) Let F' = {(p1,...,prs+1) €
R : p; > 0, and (1) and (2) hold}. Then

Vol(D(1)) = 2”(27T)”/'--/p1~~pr+1F dp -+ - dpy1.

To evaluate this, let S be the cube in R given by S = {(u,c1,...,¢) : 0 < u <
1, 0 < ¢, < 1}. There is a bijection f: S — F given in one direction by

p](“’) C1y .- 7u7”) = Cl/n exp (Z Cq IOg |O-J(€q)|> )

q
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j =1,...,7+ 1. [In the other direction, we have h : F' — S given by h(p) =

(U(p), 01(9)7 cee JCT'(p))7 where P = (p17 s 7p7‘+1) S F7 u<p - H:Jrll p?l7 and the
numbers ¢,(p) are determined by the linear equations

1
Zcq )log |oj(eq)| = log p; — —logu(p)

(j =1,...,r+1).] This works because the determinant det(log|o;(e,)|) does not
vanish. We now compute the Jacobian J of F.

9p; _ 1p; Ip;
et R o el | . )
ou nu’ de, pjlog|oj(ey)|
Hence we have
2 ploglog(en)| -+ pilogloi(e,)
J = | : . :
pJ;Tf pre1loglo,a(el)] -+ pryrloglora(e,)]
1
_ P1p2 Prad
- nu 1 10g|0-i(5j)|i )

1<i<r+1,1<j<r. Multiply the i** row by n;, and then add the first » rows to
the last row. The last row becomes (n,0,0,...,0). So the determinant is n27" Ry,

and so J is J = BELrtln )= R Now

r+1 r+1
Hp;” = uexp (Z Cq <Z n;log \aj(aq)|>> = u.
=1 =1

SoJ=—1"K __ Thus

Pri+1°pr41272

VolD(1) = 2"(2m)" [ prip1--pra dp

= 272m)" | prga(s) - pria(s)J(s) ds

= 27" Ry [ ds

T T
= 2"« QRK.
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Finally, we show that dD(1) is Lipschitz parametrizable. Recall that we have f :
S — F given by

pi(ucy,... ;) =u!"exp <Z ¢qlog |0j(5q)|>

q

(j =1,...,7+1). Only '™ is not continuously differentiable. Reparametrize the
cube by setting u = u}. Then we get a continuously differentiable parametrization of
the closed cube onto the closure of F' given by

pj(u,ci,...,¢) = ujexp (Z cqlog |aj(5q)|>

q

(j=1,...,7+1). Then p restricted to 95 gives an (r — 1)-Lipschitz parametrization
of 0D(1). This completes the proof of the theorem.

8.2 Dirichlet Series

Definition 8.5 A Dirichlet series is an infinite series > >~ a,e™*"*, with a,,s € C,
A € R

We shall be concerned with series of the form » a,n"*%, i.e. A, =logn.

Proposition 8.6 If the partial sums of a Dirichlet series are bounded for a particu-
lar value s; of s, then the series converges uniformly on compact subsets of the set

{s:R(s) > RN(s1)}.

Proof. Let ) .7, a,v~*® be the Dirichlet series. Set Q, =Y ._; a,v~*'. By hypothe-
sis, there exists a ) such that |Q,| < @ for all n. Let 03 = R(s;), and suppose J > 0.
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Then, on the domain R(s) = o > oy + 0, we have

ntm n+m
Z a/v'Uis = Z av'Uisl’Uslis
v=n+1 v=n+1
n+m
= Z (Qv _ Qv_l)vsl—s
v=n+1
n+m n+m—1
— Z vim—s . Z Qv(U + 1)51—3
v=n+1 v=n
n+m—1
= Quen(n+m)" " = Quln £ )" 4 YT QT = (v D)),
v=n+1
Hence
n+m e
Z a,v % < Q ((n -+ m)al—a + (n + 1)01—0) +Q Z |,U81—S . (v + 1)31—5|'
v=nt v=n+1

Next observe that we have

v+1
07 — (v + D) = (51— 3)/ w5 dy

v+1
< s — 3|/ w7 du.
v

If s remains in the domain |s — s1| < C, then

v+1
017 — (v 4+ 1)7% < C/ u T du < C5 o0 = (v +1)79).

Hence
n+m n+m
doaw| < Qn+m) T+ 410 +CQ Y (v —(v+1)7)
v=n—+1 v=n—+1

< 24+C5HQu™?

— 0

as n — oo (independently of m). Hence the result follows.
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Corollary 8.7 If the Dirichlet series converges for some value of s, then there is a real
number oy such that the series converges for (s) > oy and diverges for R(s) < oy.
0y is called the abscissa of convergence.

Proposition 8.8 If the partial sums P, = > a, of the coefficients of a Dirichlet
series Y a,v”° have the property that |P,| < Pn for some P and some o; > 0,
then the abscissa of convergence oy is less than or equal to o;.

Proof. Let R(s) = 0 > 0;. Then

n+m n+m—1
> aw ™t = Pum(ntm) = Pun+ 1)+ Y P(v—(v+1)7).
v=n-+1 v=n+1

So (as in the proof of Proposition 8.6), we have

n+m—1 n+m—1
Z a0 | < P[(n+m)" 7+ (n+1)777] Z Pv‘”|s]/ 1 du
v=n-+1 v=n-+1

< 2Pn?t7°% + P|s] Zv"l / u "t du

v+1
< 2Pn°t"7 + Pls |Z/ w0 du
n+m—1
< 2Pn "% + P|s|(oy — o) ! Z (v4+1)777 =77 %)
v=n-+1

<2Pn” 7 4+ |s|P(oy — o) ' (n+ 1)
<@+ [sl(0 — o) Pam0

— 0

as n — oo (independently of m).

Definition 8.9 The Riemann zeta function ((s) is defined by ((s) = > "2 v7*.

Proposition 8.8 implies that the abscissa of ((s) is at most 1. However, ((s) does not
converge at s = 1, and so the abscissa of convergence is 1.
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Theorem 8.10 ((s) has an analytic continuation to R(s) > 0, except for a simple
pole at s = 1, with residue 1.

Proof. Consider the following series:

g2<s):1—%+%—--..
The partial sums of the coefficients are equal to 0 or 1, and so are bounded, i.e.
(2(s) is analytic for R(s) > 0. For R(s) > 1, we have 2((s) + G(s) = ((s), ie.
((s) = =5r=Ca(s), giving a meromorphic continuation to R(s) > 0. To see that ((s)
has no poles for s # 1, consider the series

1 1 1 1—r 1 1—r 1
GO =ttt T eIy T e ey T ey Tty
Then the partial sums of the coefficients of (,(s) are bounded by r. Hence Proposi-
tion 8.8 implies that (,(s) is analytic for $(s) > 0. Also, we have ((s) = #C}(S)
Hence if s # 1 (R(s) > 0) is a pole of ((s), then we must have r'=* = 1 for all r,
which is a contradiction.

Theorem 8.11 Let f(s) =Y .2, a,v % andlet P, = > "_, a,. Suppose that for some

p€ Cando; € R (0 <0y <1), there exists a constant C' such that |P, — pn| < Cn™
for all n. Then f(s) is holomorphic for R(s) > 01, except for a simple pole of residue
lat s=1.

Proof. The sum of the first n coefficients of the Dirichlet series of f(s) — p((s) is
P, — pn. Thus Proposition 8.8 implies that f(s)— p((s) is holomorphic on R(s) > o7.
The result now follows from Theorem 8.10.

8.3 The Zeta Function of an Algebraic Number
Field

Let K be a number field and n = [K : Q).
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Lemma 8.12 For R(s) > 1, the sum Np~? over all prime ideals p of K converges.
p

Proof.

> Np = > Y Npt<nd pt<ndy m
p p m=1

pEZ pl(p)
p prime

and this last sum converges.
Remark. For s = 0 + it and y > 0, y* = e*1°¢¥, where logy is the real logarithm.

Theorem 8.13 For ¢ > 1, we have

(1) IL,1-N p~*)~! is absolutely convergent and converges uniformly on compact
subsets.

(2) The sum (x(s) = > ,Na™® (sum over all integral ideals a of K') is absolutely
convergent and converges uniformly on compact subsets. ((x(s) is the zeta
function of K.)

(3) Cx(s) =TI,(1 - Np~=*)~L. (In particular, (x(s) # 0 for R(s) > 1.)

Proof.

(1) Fix 09 > 1, and consider the product in the domain o > (. For any p, we have

log(1L — [Np~®|)~" = > Np~""m"!
m=1

<Y Ny
m=1

AL
1— Np—°
< AN
— 1— Np—oo
< 2Np~°.
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(2) and (3)

Now since Y- Np~7 converges, it follows that > log(1 — |[Np~*|)~" converges
uniformly for ¢ > o¢. This implies (1).

Consider a finite product

[Ta-Np) = [J+Np+Np™>+--) =) Na,

Np<t Np<t

where Y denotes the sum over all integral ideals a whose prime factors have
norm at most . Then

[Ta-nNp=)7" =3 Na=+ > Na. (1)

Np<t Na<t Na>t

Hence for op > 1 fixed, we have >y, Na=? < [y, (1 — Np~2°)~'. This
implies that ) - Na~* is absolutely convergent for R(s) > 1. From (}), we have

[Ta=-Np=)'=> Na*|< ) Na“.
Np<t Na<t Na>t

On o > o9 > 1, we have >y .., Na™7 < >y, Na™? — 0 as t — oo (exer-
cise). This proves (2) and (3).

Definition 8.14 Let Y be any ideal class of K. The partial zeta function of Y is
Cr(5:Y) =>4y Na™® (sum over integral ideals only). So (x(s) = >y (k(s;Y).

Theorem 8.15 For any ideal class Y of K, (x(s;Y") is holomorphic on R(s) > 1— =,
except for a simple pole at s = 1 of residue

2 (2m)" Ry

PK U}’d}(|1/2

Proof. We may write (x(s;Y) = > o, a,v°, where a, = #{a € Y | Na = v}.
Recall that

FY, ) =#{a €Y | Na <t} = pgt + Ot n).
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Now P, =aj;+ -+ a, = f(Y,m), and so the result follows from Theorem 8.11.

Corollary 8.16 (x(s) is holomorphic on R(s) > 1 — £, except for a simple pole at

s =1 of residue hxpx (where hg is the class number of K).
Corollary 8.17 K contains infinitely many prime ideals of degree 1 over Q.

Proof. On {z: |z| < 1}, the branch of the logarithm for which log1 = 0 is given by
log(1 —z) = =Y 02 v 'z". For this branch, for o > 0 real, we have

log Cic(0) = 3 log(1 — Np~)~!
p

=Y (wNp™) !

p v=1

=D Np 74> ) (uNp™)
p

p v>2

We claim that 7 %7 o,(vNp~")~" is holomorphic on any domain R(s) > oo > :.
We have

SN < S S v
p v>2 p v>2
= ST I N
p
< %(1 —2770) 1y T Np

P
o)
< —200
SN m N
m=1

where n = [K : Q], and this last sum converges for oy > 3.
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Hence it follows that » Np~™ — oo as 0 — 17. Next we observe that
2 NDTT= 2 NpT Y Ny
p fo=1 fo=2

and the last sum on the right converges at o = 1. Hence ) et Np~! diverges, and
so the result follows.

Corollary 8.18 > ,cz p ' diverges.

p prime

8.4 Some Remarks on Characters (Extended Ex-
ercise)

Definition 8.19 Let F be a field and G a finite abelian group. An F-valued char-
acter y of G is a homomorphism y : G — F*. A character of GG is a C-valued
character of G.

X(G) is contained in S*. We let G denote the group of characters of G. This is a
finite abelian group.

Duality Theory for Finite Abelian Groups (8.20)
(1) Gx H~G x H.
(2) G ~ G (non-canonically).

(3) For a subgroup H < G, let H- = {x € G : x(H) = 1}. Then H ~ G/H* and
H = ﬂerL ker(x).

(4) G ~ @ via g(x) = x(g) (so this isomorphism is canonical).

(5)
S (6) {|G| if y is trivial,

v 0 otherwise.
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(3°) H+ =(,cp ker(h) (viewing h € 5\)
(57) | |
ZX(Q): {|OG| if g = 1id,

ol otherwise.
x€G

Definition 8.21 Let m € N. A Dirichlet character modulo m is a function
X : Z — C such that

(iii) x(a) = 0iff (a,m) # 1.

Hence a Dirichlet character modulo m defines a character of (Z/mZ)*.

Definition 8.22 Let y be a Dirichlet character modulo m, and suppose that n | m.
Then x is induced from a Dirichlet character modulo n if x(x) = x(y) whenever
=y (mod n) and (zy,m) = 1.

Point. If n | m, then there is a natural quotient map 0 : (Z/mZ)* — (Z/nZ)*.

— —

Then = € (Z/mZ)* is induced from (Z/nZ)* iff x = x'0 for some X' € (Z/nZ)* (i.e.
iff x factors through ker(0)).

Definition 8.23 A character y is called primitive if it is not induced from a char-
acter modulo a proper divisor of m. In this case, m is called the conductor of .

Exercise. Suppose that x is a Dirichlet character on Z. If x is induced from a char-
acter modulo m and also a character modulo n, then y is induced from a character
modulo (m,n).
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Corollary 8.24 Let x be a Dirichlet character on Z. Then there is a unique positive
integer f, such that x is induced from a primitive character modulo f,. The number
fx is called the conductor of x.

8.5 [L-Functions

Definition 8.25 Let y be a primitive Dirichlet character. The (Dirichlet) L-function
attached to y is defined by

L(s,x) = Y x(w)v*.

Theorem 8.26 Assume that x # id. Then Y, x(v)v™® converges absolutely on
R(s) > 0, and it converges uniformly on compact subsets of this region. For R(s) > 1,

we have
L(s,x) = [J(1 = xo)p~)

p

Proof. Observe that the partial sums P, = " x(v) are bounded (independently
of n) by e.g. ¢(fy), where ¢ is the Euler ¢-function and f, is a conductor of x. Hence
the first assertion follows from Proposition 8.8 and Proposition 8.6. The second as-
sertion is proved as in Theorem 8.13.

Remark. L(s, xo) = ((s), where xq is the trivial character.

Theorem 8.27 Let K = Q((,), so Gal(K/Q) ~ (Z/nZ)*. Then (x(s) =[], L(s, x),
where the product is taken over all primitive Dirichlet characters whose conductors
divide n.
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Proof. It suffices to prove the equality for real values of s > 1. For such values of s,
we have (x(s) = [[,(1 - Np~*)~,

Tz =TITIC - x@pr )

The theorem will follow if we show that

[Ta—=nNp) =] —x@)p ). (1)

pl(p) X

Let n=p"m (r >0, (m,p) = 1).

Q(Cn) =K

Q(Gm)

Q

We now compute the left side of (1). We have pox = (p1---p,)¢, Np; = p/, where f
is the order of p (mod m), and efg = ¢(n). Thus the left side of (1) is (1 — p~/*)9.

We now compute the right side of (t). If, for some x, f, { m, then p | fy, and so
X(p) = 0. So the right side is []; |,,(1 — x(p)p™). Each character x with f, | m
induces a character y on (Z/mZ)* (via the quotient map (Z/mZ)* — (Z/f\Z)*). As
x runs over the set of primitive characters for which f, | m, the induced characters y’
run over (Z/mZ)* (since every such y’ is induced from a unique primitive character
X, and for such x, f, | m). If z=p (mod m), then x(p) = x'(z). Since z has order f
in (Z/mZ)*, X'(z) is an f root of unity. As x’ runs over (Z/mZ)*, x'(z) runs over
the group of f' roots of unity, taking each value x(m)/f = g times. (Think of the
set {X’(z) X € (ZW)X} as being the set of values of z € (Zm)x) Hence the
right side of (t) is

[[a—wp)y =1 —p ) =1-p )y,

wf=1

which is the same as the left side.
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Corollary 8.28 Let hx be the class number of K = Q((,). Then

pichie = [ L(1,x),

XFX0
IxIn
where Yo is the trivial character and
2" (2m)"? Ry
PK = — 1

Proof. Evaluate the residue at s = 1 of both sides of the equation (x(s) =

[I, L(s,x). For x # xo, L(s,x) is holomorphic at s = 1. L(s,xo) = ((s) has
residue 1 at s = 1. (x(s) has residue pxhg at s = 1.

Corollary 8.29 For any character y, L(1,x) # 0.

Theorem 8.30 (Dirichlet’s theorem on primes in an arithmetic progression) Let
m and d be positive integers with (m,d) = 1. Then the arithmetic progression
{m + nd | n € N} contains infinitely many primes.

Proof. Write f(s) ~ g(s) to mean f(s) — g(s) is holomorphic in a neighborhood of
s = 1. Let x be a Dirichlet character with f, | m. Then

o) x(p)" s
g £(5) = 3 a1 10y S o
pn p
(since Y-, 5o me 18 finite). Thus
log L(s, Y) Zx > xO)) o (1)
Ce(Z/mZ)* peC

since p = ¢ (mod m) implies x(p) = x(¢q). Let A € (Z/mZ)* be a fixed residue class.
Multiply both sides of (}) by x(A™!), and sum over x € (Z/mZ)*. We get

S ) ~ 3 lc>zp—s:;[§ch>zp—s].

peC peC
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ZX(A‘lc) _ {¢(m) ifA=C,

c 0 otherwise.

(Exercise.) Hence

ZX Ylog L(s,x) ~ Zp’s

Since L(1,x) # 0 for x 7é Xo, we obtain log ((s) ~ ¢(m)>_ . ,p~°, and this implies
the result.

Corollary 8.31 Given any o € Gal(Q((,,)/Q), there are infinitely many primes for
which o is the Frobenius automorphism.

8.6 Abelian Extensions of Q

Suppose that K/Q is an abelian extension. The Kronecker-Weber Theorem implies

that K C Q(¢,) for some n. Now Gal(Q((,)/Q) ~ (Z/nZ)*, and so Gal(Q((,)/K)
is isomorphic to a subgroup H(K) of (Z/nZ)*. Recall that

—

H(K): = {X € (Z/nZ)* : x(H) = 1} .

Then .
H(K) ~ H(K) = [(Z/nZ)x /H(K)L] .

Then —
H(K)* ~ Gal(K/Q) ~ Gal(K/Q).

We refer to H(K)* as the group of Dirichlet characters belonging to K, or the
group of characters of K.

Definition 8.32 Let K/Q be abelian. Then conductor of K is defined to be the
smallest positive integer n such that K C Q((,).

Exercise. Let K be a quadratic field of discriminant d. Show that the conductor of
K is |d|.
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Proposition 8.33 The conductor of K is the least common multiple of the characters
of K.

Proof. Let K C Q((,), and view the characters of K as characters modulo n. Set
H = Gal(Q(¢,)/ K), viewed as a subgroup of (Z/nZ)*. Then H =, ;. ker(x). If
m | n, then K C Q((,,) iff {x (mod n) : x =1 (mod m)} C H. Hence K C Q((n)
iff each character of K is induced from a character of (Z/mZ)* iff f, | m for each
x € H*.

Theorem 8.34 Suppose K/Q is abelian. Then (x(s) = [[, o x L(s, x) (product over
all characters of K).

Proof. As in the proof of Theorem 8.27, it suffices to prove that, for each rational
prime p,

[Ja=nNp™) =[] - x(p)p). (1)

pl(p) X
The left side is equal to (1—p~/*)9, where (p) = (p1 ---p,)¢, and f is the residue class
degree of p;/p (any 7). Fix m such that K C Q((,,). Set H = Gal(Q((,,)/ K), viewed
as a subgroup of (Z/mZ)*. Let m = p"n (r > 0, p{fn). Set Hy to be the image of H
in (Z/nZ)* under the quotient map.

Q(Gm)

H

|
Q



K P by
T

Q p

Then T := Q(¢,) N K is the subfield of Q(¢,) fixed by Hy. T/Q is the maximal
subextension of K/Q in which p is unramified. Suppose z = p (mod n) in (Z/nZ)*.
Then f is the order of z (mod Hy) since Frob(p, T/Q) = Frob(p, Q(¢,)/Q) |r. We
have g = [(Z/nZ)* : Hy]/f. Now let x be a character of K. If p | f,, then x(p) = 0.

Hence
[T =xpr) = J] @=x@pr™.

x of K x of T

The characters of T' are the characters of (Z/nZ)*/Hy. As x runs over all such
characters, x(z) runs over the f™ roots of unity. Each such f" root of unity occurs
g times. The right side of () is

[[Ta-p)yr=0-py.

wf=1

8.7 Functional Equations

Let x be a Dirichlet character. Let

5 — 0 if x(—1) =1, ie. x is even,
X1l if x(—1) = —1, ie. x is odd.

Let 7(x) = S0 x(a)e ™/, Let I'(2) = [ t*le~* dt, where z € C, R(z) > 0;
this admits a meromorphic continuation to all of C. Let

M0 = (1 (252 ) 265,
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Theorem 8.35 A(s, x) can be extended to a meromorphic function on C. It satisfies
the functional equation
7(@)

A(s,x) = WA(l — 5, X)-
X

If x # X0, the trivial character, then L(s, x) is entire. If x = xo, then the only pole
of L(s,xo0) = ((s) is at s = 1.

[See e.g. Lang or Tate’s thesis.]|

Remarks.

1. W, = flT/(TX)éx is called the root number.
X T

2. If x # xo0, we know that L(x, s) is holomorphic for ®(s) > 0. The functional
equation implies

L(s,x) = W, (f/m)F* x T (1 - S; 5><> r (Sz(&)_ x L(1—s,7).

Since the I' function is never zero, any poles of L(s, x) on the domain R(s) <0

1—s+3dy
2

would have to arise as poles of the factor I' < . The T" function has poles

at 0 and at the negative integers and nowhere else. Hence L(s, x) is holomorphic
for R(s) < 0.

3. If x = xo, the functional equation of the Riemann ( function is

r(3)aic =1 (150) e -,

S0 )
I (52) 72 ¢(1 - s)

L)
Hence ((s) has zeros at s = —2n (n € N) (“trivial zeros”). The values ((1—2n)
(n € N) are in Q.

((s) =

4. The zeta function of any algebraic number field satisfies a functional equation.
Suppose that K/Q is a real abelian extension, with n = [K : Q]. Set

Zie(s) = ldx "2 (73T (3)) x Cls).
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Then Zx(s) = Zx(1 —s). Recall that (x(s) = [, o x L(s,x) (Theorem 8.34).
Comparing the functional equation of (x(s) with that of [T, L(s, x) gives

1—s
2

s/2
<|dK|Hf;1> = [Ix(=D £ 700" x <|dK!Hf;1)

X

This is possible for all s only if both sides equal 1, i.e.
dic| =TT £ (%)
X

and

[I700 = Tx(=nr0" (%)

X

In fact, these formulae hold for all abelian extensions K/Q. (%) is called the
conductor-discriminant formula. It implies that p ramifies in K/Q iff p
divides the conductor of K (cf Proposition 8.33).

Corollary 8.36 Let y be the unique quadratic character modulo p. Then

) — VP ifp=1 (mod 4),
%) {z\/f) if p=3 (mod 4).

Proof. Apply (*x*) to K, the unique quadratic subextension of Q((,)/Q.
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Chapter 9

Class Number Formulae

Recall. Let K/Q be abelian with n = [K : Q]. Then (x(s) =[], s x L(s; ), s0

hR = w|d|"*27 (2m) ] L1 x).

XF#X0

Either all embeddings o : K < C are real (in which case w = 2) or they are all
complex. So

hR = |dK|1/2217n HX#XO L(1,x) K real,
w’dK‘lm(QW)_n/Q HX7,5XO L(1,x) K complex.

If K is imaginary quadratic, these determine h. Otherwise we have to deal with the
regulator (which is hard).

9.1 Summation of [-Series

Let x # xo be a primitive character, f its conductor, and ¢ = e*™//. Then

Lis,x) =Y xp™= Y x@ > v
v=1 (z,f)=1 v=z (mod f)
(R(s) > 1). Now 3= _ (mod jy V" = D_ney Gov~° (a Dirichlet series), where

v=

0 otherwise.

. :{1 ifv=2 (mod f),
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Now

F-1 :
e ) f ifr=0 (mod f),

otherwise,
SO .
LI
Cp = = C(mfv)k.
I
Hence

L(s,x) = Y x(z)> ¢y

(z,f)=1

AP DIRCIS D D l

k| (z,5)=1
f—1 00
= w00
k=0 v=1

say, where 7;(x) is the Gaufl sum, with 75(y) = 0 for x # xo. For k # 0, the
partial sums >, (7% are bounded. Proposition 8.8 implies that the last series is
convergent for R(s) > 0 (and represents L(s, x) by analytic continuation). Thus

f-1 00
L) = ) ml0) Y ¢
k=1 v=1
Thus
F-1
L(Lx) = =) 7(x)log(1 - ¢*)
k=1
(X 7£ X0, f - fX)

Exercise. If (a, f,) =1, then 7,(x) = 0.

Theorem 9.1
(a) If x is odd (i.e. x(—1) = —1), then




(b) If x is even (x(—1) = 1), then
() T I ) 0 mk
210 =-" 5 S@oglt - ¢ = =T Y ARtog (sin T
f k  (mod f) f O<k<f f
Proof. Note that 7,(x) = x(a) for any a. Hence
S 00 N~
L(L,x) = =/~ 2 m)log(l = ¢ = === > x(R)log(1 = ¢7),
k=1 k=1

Set S =", x(k)log(1l — ¢7%). We wish to evaluate S. First

1 — C_ —27rzk/f
e mk/f(emk/f . e—ﬁik/f)

If0<k<f,then § — ¢ hes in the open interval (—%, g) Hence

log(1 — (%) =log (2 sin %k) + (fracl? — ;) ,

log(1 — ¢*) = log (2 sin %) —ar (% — ;)

(i) Assume y is odd. Replacing k& by —k in the equation defining S gives

provided 0 < k < f.

S=- x(k)log(1 — ¢*).
k  (mod f)
Hence
28 = ZX [log(1 — ¢7%) —log(1 — ¢M)] —22 (——E
0<k<f f
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Since >, x(k) = 0, this implies that
v —
S=-% > x(b)k,
O<k<f

and now (a) follows.

(ii) Now assume Y is even. Replacing k by —k in the equation defining S gives

S= > x(k)log(1—¢").

k  (mod f)

Hence

25 = Zm[log(l — Cik) +log(1 — Ck)]

and now (b) follows.

9.2 Quadratic Fields

Let K/Q be a quadratic extension of discriminant d and f the conductor of K, which
is |d|. K has a unique nontrivial character, x, say, and x is primitive modulo f. If
pt f, then x(p) = (5) (the Jacobi symbol).

Q(¢r)

H

|
Q



The Galois group of Q((y)/Q is (Z/nZ)*. Let H be the unique subgroup of (Z/nZ)*
of index 2 which contains none of the subgroups ker((Z/fZ)* — (Z/ f'Z)) for divisors
ffl1fo1:(m gf_l is complex conjugation. Hence y is even iff K is real.

Theorem 9.2 Let K be a real quadratic field of discriminant d. Then the class
number of K is given by
1
h = “Toge x(x) log sin %,

0<r<%

where € > 1 is the fundamental unit, and y is the nonprincipal character of K.

Proof. (x(s) =1, o x L(s,X), 50 hR = |dk|"/*27'L(1, x) in this case. So Theorem
9.1 implies that

= (577) 3 0 ()

0<k<f

(and in this case f = d). The conductor-discriminant formula implies that 7(y) =
|dk|"/2. We have x(f — ) = x(—z) = x(z), and sin (—”(ffx)) = sin ’T—fz So

f
||/ (—T(X)) —  wk
h = Z x(k)log ( sin —
2R f O<k<f f
1 . X
= loas Zd x(x)log (sm 7) .
0<.’E<§

Theorem 9.3 Let K/Q be an imaginary quadratic extension with discriminant —d <
—4. The class number h of K is given by

h=—3 3 x@r=2-x@)" Y @),

0<z<d O<z<$

where Y is the nonprincipal character of K.
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Proof. Note that with our notation, f, = d. Then
B d'?w
2R

—d < —4, so w = 2. We have R =1 for any imaginary quadratic field. So we obtain
(cf Theorem 9.1(a))

L(1, ).

d1/2

h=— (”;&) > x(k)k.

O<k<f

Since x is even, 7(x) = ifY? (conductor-discriminant formula). Hence we get
h = —é Y 0<zcq X (@), which is the first equality.

We now prove the second equality. Suppose that f is even. We have y (14 f/2) = —1
since 1 + f/2 (mod f) generates the kernel of (Z/fZ)* — (Z/gZ)X. If (y, f) =1,
then 1 + % =1 +§ (mod f), and so X(l + %) = —1. For any x with (z, f) = 1,
we have x + % =z (1 —l—ac_l%) (mod f). Thus x (z + %) = —x(z) (if 2| f). So we
obtain

hf=- 3 x@z- X<x+g> (i”g)

o<ae<i O<z<i
_ /
= Z x(x)z + Z x(x) <:c—|— 5
o<ae<i o<z<i
- LS .
2
0<m<£

Since x(2) = 0 if 2 | f, this proves the second equality when f is even.

Now suppose f is odd. We have

hf=—=> x@z— > x(f—x)(f—x)

O<ae<i o<z<i

== > @t Y x@)(f - o) "

o<a<i O<w<i

= > xl@)(=2z+f).

0<x<£
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On the other hand, we may write

hf=— Y @z+x(f-a)(f-2)

o<z<f
T even
== ) @z —x(@)(f - )]
o<z<f
T even
=2 > x@2)r-2 ) xQu)z+f > x
O<z<i o<z<i o<a<i
=—4 Z x(2x)x + f Z X(2x).
O<z<i O<az<i

Hence
hf= Y x@)(—4z+ f). (%)
—2x(*) + (k) gives
hf(=2+x2)=—f Y x

0<z<£

as required.

Corollary 9.4 Suppose p = 3 (mod 4) is prime. Let R and N denote the number
of quadratic residues and nonresidues, respectively, in the interval (O, g) The class
number of Q(y/—p) is odd. If p = 7 (mod 8), then h = R — N. If p = 3 (mod 8),
then h = @

Proof. The nontrivial character of Q(y/—p) has conductor p and is given by x(z) =
<£> (Legendre symbol). Hence x(2) = (—1)#*~D/8 ie.

—1 ifp=3 (mod 8),
@)=t Ip=d mod
1 ifp=7 (mod38).

Theorem 9.3 implies that

h=2-x2)" ) xl)

0<z<f
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The sum is R — N, and it is odd because the number of terms is odd.

Remark. Corollary 9.4 implies that R > N, and so the quadratic residues tend to
cluster in the first half of the interval (0, p).

Corollary 9.5 Let K be a real quadratic field with discriminant d, class number h,
and fundamental unit . Let

-1
b
n= (];[Sin%) <a sin%) ,

where a and b run over integers in (0, d/2) which are coprime to d and which satisfy
x(a) =1 and x(b) = —1, respectively. Then " = 7.

Proof. Exponentiate Theorem 9.2.

Remark. Suppose p = 1 (mod 4) is prime. The nontrivial character of Q(/p)

is x(x) = (%) Since x(x) = x(—z), there are as many quadratic residues in

(0,p/2) as there are in (p/2,p). However, n > 1 since 71 is a power of € > 1. Hence
[1,sin = > JT, sin =. Since the function sint is increasing on the interval (0, 7/2), it
follows that the quadratic residues cluster near the beginning of the interval (0, p/2).

Example. Let p = 29. Then the quadratic residues between 1 are 14 are 1, 4, 5, 6,
7, 9, and 13. In particular, there are five between 1 and 7 but only two between 8
and 14.
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Chapter 10

Artin L-Functions

10.1 A Crash Course in Representation Theory

Let G be a finite group. If fi, fo : G — C are C-valued functions on G, we define
their inner product by (fi, f2) = \_(19| > gec f1(9) f2(g). If f: G — Cis a C-valued
function on G and o € G, define f° : G — C by f?(g) = f(ogo™'). f is said to be
a class function if f7 = f for all 0 € G. Suppose H < G, and let f : H — C be
a class function on H. We define a class function Ind% f : G — C as follows: Let
g1, ..., G- be a collection of coset representatives of H in GG. Extend f to fon G by

= {f(g) geH,

flg) = 0 o2 I,

Then
(Ind5; £)(9) = > _ flg; " 99:) = Zf 'gs).
i=1 seG

Let f; be a class function on H and f> a class function on GG. The Frobenius reci-
procity theorem states that (fi, f2 |u)g = (Ind$ f1, f2)e-

How do class functions arise?

A representation of a finite group G is an action G on a finite-dimensional C-vector
space V, i.e. a homomorphism p : G — GL(V'). The degree of p is dim(V'). The
representation (p, V') is irreducible if the G-module V' contains no proper submod-
ules. Two representations (p,V) and (p/,V’) are equivalent if the G-modules V'
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and V' are isomorphic. Every representation (p, V) decomposes into a direct sum
V=V & - @V, of irreducible representations. If an irreducible representation
(P, V) is equivalent to precisely r, representations in this direct sum decomposition,
we call 7, the multiplicity of p, in p, and we write p = ) ropo. The character x
of a representation (p, V') is the function y : G — C; x(0) = Tr(p(0)); this is a class
function on GG. Two representations are equivalent iff their characters are equal.

If p=7>",TapPa, then x = > 74Xq. For irreducible characters x, and xg, we have

0 if o #£ 3,

(e Xo) = {1if a=8

and

(o it (0) # (7).
gXa(‘ﬂXa(T) = {%if (o) = (1),

where (o) and (1) are the conjugacy classes of o and 7.

Every class function on G is a C-linear combination of characters x of irreducible
representations. A class function which is a Z-linear combination of characters is
called a generalized character.

For each g € G, define a symbol z,, and consider the C-vector space V = @ gec Cyg.
Then dim V' = |G|. The regular representation reg. : G — GL(V) is defined by

o +— {x,— x,4}. Then
(0) |G| ifo=e,
rego\0) =
Xrega 0 if o #e.

We have Xreg, = 2o Xa(l)Xa and regg; = Ind?e} 1, where 1 denotes the trivial char-
acter on the subgroup {e}.

10.2 Induced Modules

If H < G and V is an H-module, then we may define a G-module W := Ind$ (V)
called the induced G-module. W = {f : G — V, f(rx) = f(z) for all 7 € H}.
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The action of ¢ € G on f € W is (6f)(x) = f(zo). There is a canonical H-
homomorphism 7 : Ind5V — V, «(f) = f(1). This maps the H-submodule
V' = {f € md%V : f(z) = 0forall z ¢ H} isomorphically onto V. Identify V"’
with V. Then with this identification, Ind$ V = D,cc/moV. (Exercise.) (o runs
over a system of left coset representatives of H in G.)

L—
a
K——7%p

Let L/K be Galois with G = Gal(L/K). Let (p,V) be a representation of G. For

brevity, we denote the action of ¢ € G on v € V by ox rather than p(o)v. Set Gy to
be the decomposition group of B and Iy the inertia group of P | p.

ng ¢
Gy Gy /Iy
K, k

The group Gg/Iy is generated by the Frobenius automorphism og. oy is an endo-
morphism of V™, where V™ = {v € V | 7v = v for all 7 € Iy}. The characteristic
polynomial det(1 — ot | V*) depends only on p, and not upon the choice of prime
B, since any other choice B’ gives an endomorphism which is conjugate to og. The
determinant depends only upon the character x of p, since any two representations
with the same character are equivalent.

Definition 10.1 Let L/K be a Galois extension with group G, and let (p,V') be a
representation of G with character xy. The Artin L-series of p (or x) is defined by
1

Lis,x LK) = 1;[ det(I — op(Np)=—= | VTe)’

For every 0 > 0, the Artin L-series converges absolutely and uniformly on the half-
plane R(s) > 1+ 6. This is because, in the factorization

d

det(1 — oq(Np)~* | v") = [J(1 — ei(Np) ™),

i=1
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the €;’s are roots of unity since oy is of finite order.

Theorem 10.2

(i) For the trivial character x = 1, we obtain the Dedekind zeta function L(s, 1, L/K) =
Ck(s)-

(i) If L/’ O L O L DO K is a larger Galois extension, then L(s,x,L'/K) =
L(s,x, L/K), viewing the character x of Gal(L/K) as a character of Gal(L'/K).

(iii) If x; and xo are two characters of Gal(L/K), then L(s,x1 + x2,L/K) =
L(s,x1,L/K)L(s, x2, L/ K).

(iv) If M is an intermediate field K C M C L, ¢ a character of Gal(L/M), and y,
the induced character of Gal(L/K), then L(s, xy, L/K) = L(s,, L/M).

Proof.

(i) Suppose that p : G — GL(C) is the trivial representation p(c) = 1 for all o € G.
Then det(1 — op(Np)~* | C) =1 — (Np)~*, and so L(s, xo, L/ K) = (k(s).

(i)

r—p
L——
K——F

Suppose that (p, V') is a representation of Gal(L/K). Then Gal(L'/K) acts on
that Gal(L/K)-module V via the natural quotient map Gal(L'/K) — Gal(L/K).
This map in turn induces homomorphisms Gy — G, Iy — Iy of decom-
position and inertia groups. We have Gy /Iy — Gg/ly, o — ogp. So
(o, VI%') = (oq, VI®), ice. det(1 — oqut | VI#') = det(1 — ot | V¥), and this
implies the result.

(iii) Suppose that (p1, V1) and (pe, V2) are representations of Gal(L/K') with charac-
ters x1 and x2. Then the direct sum (p; & p2, Vi @ V3) is a representation with
character y; + yo and

det(1 — oot | (Vi ® Va)™) = det(1 — oot | V;*) det(1 — oot | V3*).
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(iv) This is slightly more tricky.

L RU B,
"
M q1 qr
K p

Let H = Gal(L/M) and G = Gal(L/K). Let q1,...,q, be the distinct primes
of M lying above p. For each i = 1,...,r, let P, be a prime of L lying above g;.
Set G; to be the decomposition group of B, /p, I; the inertia group of B, /q,. Let
fi be the degree of q; over p. Then f; = {flﬂ = [G; : H;I;]. Also Ng; = (Np)/i.
Choose an element 7, € G such that B, = P*. Then G; = TflGlTi and
I; = 77 ' 17;. Let 0 € Gy be such that o ogq, under the map Gy — G1/1.
Then o; := Ti_lcrn € G, is mapped to o, € G;/I;. The image of azfi in H;/1] is
the Frobenius of B;/q;. Now let p: H — GL(W) be a representation of H with
character 1. Then x, is the character of the induced representation Ind%(p) of

G on V = Ind%(W). We have to show

wh. (1)

det(1 — ot | v") = [ [ det(1 — o/t
=1

We now reduce to the case of G = G; and r = 1. Conjugation of the right side
of () by 7; gives

det(1 — alfitf" WIZ() = det(1 — szitfi (TiW)Im”HTi_l) (%)

and f; = [G; : (G;N7;H7, ') - I]. For each i, choose a system of left represen-
tatives ¢;; of G; modulo G; N 7 H7 . Check that {pi;7:} is a system of left
representatives of G modulo H. Hence V = @” wi;TiW. Set V = @j i TiW.
This gives a decomposition V =, V; of V as a Gi-module, so we have

det(l — ot | V1) = ﬁdet(l — ot | V;Il). (1)

i=1

Hence comparing (1), (), and (1), it suffices to prove that

det(1 — ot | V) = det(1 — ot | (7)),
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We now simplify notation. Replace Gy by G, I, by I, Gy N ;HT, * by H, f;
by [G : HI], V; by V, and 7,V by W. Then again V = Ind% (W), i.e. we are
reduced to the case r =1, G; = G.

We now show that we may assume that / = {1}. If we set G := G/I,
H = H/(INH), then we have V! = Ind% (W), for a function f : G — W in
V is invariant under [ iff f(x7) = f(z) for all 7 € I iff f is a function on G. Then

f automatically takes values in WI™# since we have af(z) = f(ax) = f(x) for
allae INH.

So we may assume that [ = {1}. Then G = (0) and f =[G : H|, so V =
@{:_01 o;W. Let A be the matrix of o f with respect to a basis wy, ..., wq of W.
Write [ for the d x d identity matrix. Then

B:
0 . - T
A oo oo 0

is the matrix of o with respect to the basis {c'w;}. So now we get

I —tf --- 0

0 O : Fof
det(1—ot | V) = det =det(l — o't/ | W)

Do . —tI

T |

(multiply the first row by ¢ and add to the second, then multiply the second
row by t and add to the third, etc.).

Corollary 10.3 Let {y,} denote the set of irreducible characters of G. Then

Cu(s) = Cu(s) ] L(sXar L/E)XO.

Xa71
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Proof. Recall that for the regular representation reg. of G, we have reg. = Ind?l} 1
and Xreg, = 2o Xa(l)Xa- The result now follows immediately from Theorem 10.2.

Question. (Artin) Is (.(s)/Ck(s) a homolorphic function on the entire complex
plane?

Artin’s Conjecture. For every irreducible character y # 1, the Artin L-series has
an analytic continuation to the entire complex plane.

It is known that L(s,y, L/K) has a meromorphic continuation to C and satisfies a
functional equation.

10.3 Another Formula for the Artin L-Series

(This shows explicitly the pure dependence upon the character x.)
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Consider all elements of G which are mapped onto the Frobenius og under the map
Gy — Gg/Iy. Fix one such element o; then the other such elements are in the coset
olyp. Write

TGqu
1
X(p™) ==Y x(o™7),
Telgp

We can think of these as “mean values.”

Proposition 10.4 For $(s) > 1, we have

1 oo
Lis,x, L/K) = Hdetl— )(Np)— |V_eXp<ZZmNpms>'

p m=l1

Proof. Consider the exact sequence
0=V -V -V/VI =0

(I = Iy). Now p(p) = p(oy) on VI, p(p) =0 on V/V! since
Yo = ZTO’ ye vt

for all v € V. Hence det(1—p(p)t | V) = det(1—p(oyt | V1)), and so the first equality
follows.

We now recall a general fact from linear algebra. If v is any endomorphism of a finite
dimensional vector space V', then

log det(1 — at)™ Z tr(a™)— (1)
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(identity of formal power series), e.g. if dim V' =1 and « is multiplication by a, then

log(1 — at) i am "
m=1

[For the general formula, choose a basis of V' with respect to which « is upper trian-
gular.] Now we apply this to a = p(p).

We claim that o™ (p™). For consider J := 13> _ p(7). Then J?> = J, and J

=p
commutes with p(o). So

p(p™) = p(a™)J = p(a)™J™ = (p(a)J)™ = p(p)™.

Now the second equality of the proposition follows from (f) together with the fact
that tr(a™) = tr(p(p")) = x(p™).
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Chapter 11

Introduction to Class Field Theory

Aim. Let K be a field. Determine the abelian extensions of K in terms of the arith-
metic of K.

Let K be a number field with [K : Q] = n.

Definition 11.1 A divisor 9 of K is a formal product 9,9, where 9M; is an
ideal of 0x and M, is a (possibly empty) product of distinct, real, infinite places of
K. 9My is the finite part of M, and M, is the infinite part of M.

If L/K is a finite extension, then a divisor of K determines a divisor of L in a natural
way.

Definition 11.2 Let 91 be a divisor of K, a € K*. Write a = 1 mod* 9t to mean
(1) vp(ar — 1) > v, (M) for all finite primes dividing 9.
(2) a > 0 at all infinite places dividing 90t.

Let Pyy be the group of principal ideals of K which have a generator a = 1 mod* 9t
and Igy the group of fractional ideals coprime to 9 (so Igy = Isy,). Then Ioy/Poy is
a finite group called the mod 91 ray class group.

Example 11.3
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(1) The mod ok ray class group is just the usual ideal class group.

(2) (a) Let K/Q, M =n (n > 0). I, is the set of ideals generated by rational
integers coprime to n. Suppose (r) € P,. Then r = £1 (mod n). Thus
I,/ P, ~ (Z/nZ)* J{£1}.
(b) K =Q, M =n-00 (n >0). Then I,,oc = I,. If (r) € P,, then we
need |r| = +1 (mod n). If |[r| = —1 (mod n), then (r) ¢ P,. Thus
Iioo/Proo = (Z/nZ)*.

Exercise. Let K be a real quadratic field.

L B
abelian
K p

Suppose p is unramified in L/K. Let oy be the Frobenius element of p in G. (This
is unique since G is abelian.) Now let 9t be a divisor of K which is divisible by all
primes that ramify in L/K. We may define a group homomorphism called the Artin
map: (-, L/K) : Ixom — Gal(L/K) induced by the map p — o, = (p, L/K). Then
it may be shown that (-, L/K) is surjective and that its kernel contains the subgroup
Npyw(Irom)-

Theorem 11.4 Let L/K be a finite abelian extension. Then there exists a divisor
f of K (the minimal such is called the conductor of L/K) such that the following
hold:

(i) A prime p ramifies in L/K iff p | f.

(ii) Suppose that 9t is a divisor with § | 9. Then there exists a subgroup H with

Py € H C Iy such that the Artin map induces an isomorphism Ign/H ~
Gal(L/K).

We have H = Pon - N/ (Iom(L)).

Theorem 11.5 Suppose M is a divisor of K, and let H be a subgroup of Iyy with
Py € H C Igy. Then there exists a unique abelian extension L/K, ramified only at
primes dividing 991, such that
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1. H = Py Npjx(Ion(L)).

(ii) Igm/H ~ Gal(L/K) via the Artin map.

Theorem 11.6 Suppose L;/K and L,/ K are abelian extensions of conductors f; and
fo. Let 99T be a multiple of f,fs, and let Hy, Hy C Igy be the corresponding subgroups.
Then H1 Q H2 iff L1 2 Lg.

Definition 11.7 The abelian extension associated to H in Theorem 11.5 is called
the class field of H. If H = Pk gy, then L := K(9M) is called the ray class field
mod IN.

Definition 11.8 Let 91 be a divisor of K. Say that 9t is admissible for L/K if
(i) 9 is divisible by all of those primes of K which ramify in L/K,

(ii) Prm is contained in the kernel of the Artin map (-, L/K) : Ixam — Gal(L/K).

Example 11.9 Take 9 = 1 and H = Px to be the principal ideals in K. Then we
obtain an abelian extension L/K with Gal(L/K) ~ Ix/Pk, the ideal class group of
K (via the Artin map). Then Theorem 11.5 implies that L/K is everywhere unram-
ified. Theorem 11.4 implies that any unramified extension of K has conductor f = 1
and corresponds to a subgroup containing P, = P. Theorem 11.6 implies that L is
the maximal everywhere unramified abelian extension of K. L is called the Hilbert

class field of K.

Consequence. Suppose p is a prime ideal of K. Then p splits completely in the
Hilbert class field iff the decomposition group at p is trivial iff o, = 1 iff p € P, i.e.
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p is principal.

K

Golod and Shafarevich constructed a tower by starting with K = Q(/—2-3-5-7-11-13)
or K=Q(2-3-5-7-11-13-17-19).

Example 11.10 Let L/ K be the Hilbert class field of K, and suppose K/F is a finite
Galois extension.

L
K
°

F

We claim that G acts on Gal(L/K). Suppose that 7 € G. Extend 7 to 7 € Gal(L/F).
Then if o € Gal(L/K), 0™ = To7'. (This is independent of the choice of 7 because
Gal(L/K) is abelian.) Let p be a prime of K. Then p — o, under the Artin map
TP+ 0. = TouT ' = (0p)7. Hence Gal(L/K) is isomorphic to the ideal class group
of K as Gal(K/F)-modules.
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Example 11.11

L B
/
My

/

p K
M P

R
p F

Let p be a prime in K unramified in L/K and ‘B a prime of L lying above p. p and
% are the primes of F' and M, respectively, lying below p and B. Assume that p is
unramified in M/F. Set f = [ox/p : 0p/p|, the residue class degree. Ny pp = p/,
Np = (Np)/. We have oy, C 01, 50

crpL/K Iy (z) = 2P (mod ‘}3)
for all x € o). Also
M M ! 3% 2t
A = (02 r = (mod B) =2 (mod P).

/K| _ _MJF

So op/* =0 :
P Ngr(p)

Application. Suppose
(a) M is the Hilbert class field of F,
(b) L is the Hilbert class field of K.
(c) MNK =F (e.g. K/F is totally ramified for some prime).

Then Gal(M K/K) ~ Gal(M/F) (via restriction). So Gal(L/K) — Gal(M/F) (via
restriction) is surjective. We have the following diagram:

Ix/Px — = Gal(L/K)
NK/F\L restriction

IF/PF*N>G31<M/F)
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The diagram commutes (via what we proved earlier). The restriction map is surjec-
tive. Thus the norm map is surjective. Hence the class number of F' divides the class
number of K.

Example 11.12 (Abelian Extensions of Q) Let n € N, and consider Q(¢,). If p 1 n,
then 0,(¢,) = ¢%. Hence we have a map I,, — Gal(Q(¢,)/Q). If (a,n) =1 and a > 0,
then (a) — o0,, and so the map is surjective.

We now wish to determine its kernel. Suppose r € Q, with (r) € I,. Suppose |r| =
[1p?. Then (r) = [1(p:)", and so oy = [[ 0% = o}, where oj,((¢a) = oy = 1iff
|r] =1 (mod n) iff (1) € Pp.oo. Since I, = I.00, Wwe have 1,00/ P00 >~ Gal(Q((,)/Q).
Now suppose that K/Q is abelian. Theorem 11.4 implies that there exists a divisor
I and a subgroup H with Poyy C H C Iyy. We may take 9T = n-o0o, n € Z. Theorem
11.6 implies that K is contained in the field corresponding to P,.o., i.e. Q((,)-

Theorem 11.13 Let K/Q be an abelian extension. Then K is contained in a cyclo-
tomic field.

Remark 11.14 Suppose that K/Q is abelian, and let H C P, ., be the correspond-
ing subgroup. Then the group H/P,.. corresponds to a subgroup of congruence
classes modulo n since I,.oo/Pr.co = (Z/nZ)*. Now (p) splits completely iff o, = 1
iff (p) € H. So the primes that split completely are determined by congruence con-
ditions modulo n.

11.1 Local Class Field Theory

Now suppose that K/Q, is a finite extension. Write K* = 7% x U = 7% x W' x Uy,
where 7 is a local uniformizer, U is the set of local units in K, W! is the set of roots
of unity in K of order prime to p, and Uy = {x € U : x =1 (mod 7)}.

Theorem 11.15 Let L/K be a finite abelian extension.
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(i) Then there is a map (the local Artin map) K* — Gal(L/K) which induces
an isomorphism K> /Ny (L*) ~ Gal(L/K).

(ii) If I is the inertia subgroup of L/K, then Uk /Ny k(UL) ~ I.

(iii) If L/K is unramified, then Gal(L/K) is cyclic (generated by the Frobenius F),
and (a,L/K) = Fv~(@),

Theorem 11.16 Let H C K* be an open subgroup of finite index. Then there exists
a unique abelian extension L/K with Ny (L*) = H.

Theorem 11.17 Suppose that L; and Ly are finite abelian extensions of K. Then
Ly C Ly iff N,k (Ly) 2 Npyyk(L3).

11.2 Infinite Abelian Extensions

Let K* denote the profinite completion of K*, ie. lim K* /H. (H runs over all

open subgroups of finite index.) K*/H =~ (Z/mZ) x W x U[Qn, for some m,n.

U = lim Uy /U7, W = lim W', imZ/mZ = Z = [],Z,. Hence K* ~ 77 x U; ~
Gal(K*/K).

11.3 Global Class Field Theory via Ideles

Now suppose K is a number field, and let p be a prime of K, K, the completion of
K at p, and U, the set of local units of K,. The idele group Jx of K is defined
by Jg = {(-..,2p,.. )} € [[, K, | ¥, € Uy for almost all p}. Give U =[], U, the
product topology, and let U be an open subset of Jx. Then Jg becomes a locally
compact group. We have K* — Ji with discrete image. The image of K* is called
the group of principal ideéles. Define Cx := Jix/K*. Cf is called the group of
idele classes or the idele class group.
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L—%
K——%p
Suppose L/K is a finite extension. We have a norm map Ny, : Ly — K. If 2 =

(...,@p,...) € Jp, define Np/g(z) = (..., ¥yp,...) € Ji, where y, = H‘B\P Nog/p(y).
This induces a map Ny /k : O, — Ck.

Theorem 11.18 Let L/K be a finite abelian extension. Then there is an isomorphism
Jr o OK
K*Npk(Jr)  Npk(Cr)

p is unramified in L/K iff U, C K*Np/k(Jr). (There is a natural embedding
Uy — Ji given by u, — (1,1,...,1,u,,1,1,...,1).)

~ Gal(L/K).

Theorem 11.19 If H is an open subgroup of Ck of finite index, then there exists a
unique abelian extension L/K such that Ny /x(Cr) = H.

Aliter. If H O K* is an open subgroup of Iy of finite index, then there exists a
unique abelian extension L/K such that K* Ny x(Jx) = H.

Theorem 11.20 Suppose that L; and Ly are finite abelian extensions of K. Then
Ly C Ly ifft K*Np,k(Jr,) 2 K*Npyk(JL,)-

Example. Suppose that L is the Hilbert class field of K. Since L/K is unramified
everywhere, U = [[ U, € K*Npk(Jr). Since L is maximal, K*U is the subgroup
of J corresponding to L. We have a natural map « from Jg to the ideals of K given
by
(o .. ) H pve (@),
finite p

ker(a) = U. Considering the induced map to the ideal class group gives Jx /K*U =~
Gal(L/K), which is isomorphic to the ideal class group of K.
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11.4 Adeles of K

Ag = {( -y @p,...) € [, Ky | 2p € 0k for all but finitely many p}. So Jx = Aj.

Kab

G|L

K L
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Chapter 12

Problems

1. Which of the following numbers are algebraic integers:

(a) V15(V/7+ v/39)

142
(b)

1+ ¥/10+ ¥/100
3

—~
o
~—

2. (a) Let d be a squarefree integer. Find the ring of integers of Q(v/d).
(

b) Let d be a squarefree integer with the property that d =1 (mod 4). Show
that Z(v/d) is not a PID.

3. Let L/K be a finite, separable extension of fields (not necessarily of character-
istic 0).

(a) Show that Try/x : L x L — K; (x,y) — Trp/k(xy) is a nondegenerate,
symmetric, K-bilinear form on L.

(b) Show that the map Try,x : L — K; x — Tryk(z) is surjective.

4. Suppose that K is a number field, and let x € ox. Show that z is a unit in o0
if and only if Ng/q(x) = £1.

5. Let ¢" = 1 and assume that o = L (31", (") is an algebraic integer. Show
that either Y7 (% =0or (" = ... = (",

6. Find the ring of integers, and calculate the discriminant of Q(+/5).

7. Find the ring of integers, and calculate the discriminant of @(\/5, \/;)
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8.

10.

11.

12.

13.

Let K be a number field of degree n over Q, and fix algebraic integers aq, ..., a, €
K. We know that d = D(ay,...,q,) is in Z; we will show that d = 0 or 1
(mod 4). Letting o1,...,0, denote the embeddings of K in C, we know that
d is the square of the determinant |o;(«;)|. This determinant is the sum of
n! terms, one for each permutation of {1,...,n}. Let P denote the sum of
the terms corresponding to even permutations, and let N denote the sum of
the terms (without negative signs) corresponding to odd permutations. Thus
d=(P—N)>=(P+ N)?>—4PN. Complete the proof by showing that P + N
and PN are in Z. In particular, we have d(AN K) =0 or 1 (mod 4). This is
known as Stickelberger’s criterion.

Let f(x) = 23+ ax + b, a and b € Z, and assume f is irreducible over Q. Let
a be a root of f.
(a) Show that f'(a) = —(2aa + 3b)/«.

(b) Show that 2ac + 3b is a root of (”‘“;—5’")3 +a (422) 4+ b. Use this to find
N@[a}/Q(anz + Sb).
(c) Show that d(a) = —(4a® + 27b?).

(d) Suppose a® = a+1. Prove that {1, a, a?} is an integral basis for ANQla].
Do the same if o® +«a = 1.

Let 6 be a root of the polynomial T — 27" + 2. Calculate the ring of integers of
Q(h).

Let K be a number field with [K : Q] = n, and let 2¢ of the n embeddings of K
into C have complex image. By considering the action of complex conjugation

on A(K/Q), show that the sign of d(K/Q) is equal to (—1)*.

Let K be a number field with [K : Q] = 3. By considering the action of various
Galois embeddings on A(K/Q), show that d(K/Q) is a square if and only if
K/Q is Galois.

Let f(T) € Z[T] be a monic, irreducible polynomial. Let z be a root of f, and
let K = Q(x). By expressing 1/f(7T) in partial fractions, show that

Trgo(z'/f/(z)) = 0 0<i<n-—1

= 1 1=n—1.

Now suppose that o5 = Z[z]. Let D! denote the image of the dual of 05 under
the composite homomorphism

HOIIlz(OK,Z) — HOIHQ(K, @) >~ K,
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where the isomorphism is given by the trace. Show that D~! is a fractional
ideal and that N (D) = |d(K/Q)].

14. Let p be an odd prime, and let ¢, be a primitive p™ root of unity. Set I' =
Gal(Q(¢)/Q), and let x : I' — C* be a character of order n > 1 (i.e. x is
a group homomorphism, and n is the least integer such that x™ is the trivial
homomorphism). We define the Gaul sum 7(x, (,) by

(6 6) = Y x(MG-

~yel

(a) Show that, for v € I, we have
(. ¢)) = x(v )7T(x, &)

(b) Show that

TG G)IT(X G) = p
(Here z denotes the complex conjugate of z.)

(c) Let x be the unique character of I' of order 2. From (a) and (b), deduce
that

(X, ) = £ (?) p.

15. Describe the factorization of ideals generated by 2, 3, 5 in Q(+/6).

16. Let 0 satisfy 0% — 0 — 1 = 0. Describe the factorization of the ideals generated
by 2, 3, 5, 23 in Q(0).

17. (a) Let f be any nonconstant polynomial over Z. Prove that f has a root
(mod p) for infinitely many primes p.

(b) Let K be any number field. Prove that there are infinitely many primes P
in K such that f(P | p) =1, where p is the prime of Z lying under P.

(c) Prove that for each m € Z there are infinitely many primes p = 1 (mod m).

(d) Let K and L be number fields, K C L. Prove that infinitely many primes
of K split completely (split into [L : K] distinct factors) in L.

(e) Let f be a nonconstant monic irreducible polynomial over a number ring
R. Prove that f splits into linear factors (mod p) for infinitely many
primes P of R.
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18.

19.

20.

21.

22.

23.

24.

Let p be a prime and a be an integer, and let (a/p) denote the Legendre symbol.
Taking a to be an integer modulo p, verify that the map from F; to {1} given
by a — (a/p) is a homomorphism. Let p be an odd prime and let z be a
generator of the multiplicative group F;. Show that 2(P=D/2 = _1 and hence
deduce Euler’s criterion: For any d prime to p, d?~V/2 = (d/p) (mod p).

Let p and ¢ be distinct odd primes, and let w denote a primitive p** root of unity

in an extension of Fy. For any a € Fy, define the Gaufl sum (in an extension of

F,) as

Prove:

(a) 7(a) = (a/p)7(1).

(b) 7(1)* = 7(q).

(c) 7(q)?* = (=1)®=D"p.
For any odd n, put e(n) = (n — 1)/2 (mod 4). Use (19) above to show that
7(1)77' = (¢/p). By evaluating 7(q)?! = [7(¢)?]“"Y/2 in two ways, prove the
law of quadratic reciprocity, viz.:

(£)() -

For any odd n, put w(n) = (n?> —1)/2 (mod 8). Let a be a primitive 8 root
of unity in an extension of F,, and put 3 = a + a~*. Show that 3* = 2. Using
the Frobenius endomorphism z +— 2” and Euler’s criterion to evaluate 37! in
two ways, prove that (2/p) = (—1)*®,

Find the class number of Q(v/—2) and Q(1/—6). Hence find all the integral
solutions to

(a) 28 =9y* + 2.
(b) z* = y* + 54.

h

For any integer n, let ¢, denote a primitive n'" root of unity.

(a) If n is not a prime power, show that 1 — ¢, is a unit of Q((,).
(b) Let p be a prime, and let (m,p) = 1. Show that (1 —¢,)/(1—()") is a unit
of Q(¢p)-

Calculate the class number of K := Q(+/2). Find a unit of infinite order in K.
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