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0.1 Introduction
These notes are based on a graduate course on elliptic curves I took from Pro-
fessor Adebisi Agboola in the Winter and Spring of 2007. The textbooks were
The Arithmetic of Elliptic Curves and Advanced Topics in the Arithmetic of El-
liptic Curves, both by Joseph Silverman. Other recommended books were Rational
Points on Elliptic Curves by Joseph Silverman and John Tate, Elliptic Curves by
Anthony Knapp, Elliptic Functions by Serge Lang, Introduction to Arithmetic The-
ory of Automorphic Functions by Goro Shimura, Elliptic Curves by James Milne
(available at http://www.jmilne.org/math/CourseNotes/math679.pdf), and Ra-
tional Points on Modular Elliptic Curves by Henri Darmon (available at http://www.
math.mcgill.ca/darmon/pub/Articles/Research/36.NSF-CBMS/chapter.ps).
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Chapter 1

A Crash Course on Varieties

K is a perfect field, and K̄ an algebraic closure of K.

Definition 1.1 (Affine n-space) An = An(K̄) = {(x1, . . . , xn) : xi ∈ K̄, 1 ≤ i ≤ n}.
An(K) = {(x1, . . . , xn) : xi ∈ K}.

Write K̄[X] = K̄[X1, . . . , Xn], and suppose that I is an ideal in K̄[X].

Hilbert Basis Theorem. I is finitely generated.

Definition 1.2 An affine algebraic set is any set of the form Vi = {P ∈ An :
f(P ) = 0 for all f ∈ I}. If V is any algebraic set, then we define I(V ) := {f ∈
K̄[X] : f(P ) = 0 for all P ∈ V } — the ideal of V . V (K) := V ∩ An(K) — the set
of K-rational points of V .

We say that V is defined over K if I(V ) is generated by polynomials in K[X]. So
we see that if V is defined over K with f1, . . . , fm ∈ K[X] generators of I(V ), then
V (K) = {x = (x1, . . . , xn) ∈ An(K) : f1(x) = · · · = fm(x) = 0}.

Examples.

(a) V : Xn + Y n = 1 (n > 2). Wiles showed that V (Q) is finite.
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(b) V : Y 2 = X3 − 2. V (Q) is infinite. [Fermat showed that V (Z) = {(3,±5)}.]

Definition 1.3 Say that an affine algebraic set is an affine algebraic variety if
I(V ) is a prime ideal in K̄[X].

Definition 1.4 Suppose that V is an affine algebraic variety defined over K. Set
I(V/K) := I(V )∩K[X]. K[V ] := K[X]

I(V/K)
is the affine coordinate ring of V/K — this

is an integral domain. K(V ), the quotient field of K[V ], is the function field of
V/K. Define K̄[V ] and K̄(V ) similarly. Each element f ∈ K̄[V ] induces a function
f : V → K̄.

Definition 1.5 The dimension of a variety V is dim(V ) := tr deg(K̄(V )/K̄).

Example. K̄(An) = K̄(X1, . . . , Xn), so dim(An) = n.

1.1 Smoothness
Definition 1.6 Suppose that V ⊆ An is a variety, and P ∈ V . Let f1, . . . , fm ∈ K̄[X]
be a set of generators of I(V ). Say that V is smooth at P (or nonsingular at P )
if the matrix (

∂fi
∂xj

(P )

)
1≤i≤m
1≤j≤n

has rank n− dim(V ).

Example. If V is given by a single nonconstant polynomial equation f(X1, . . . , Xn) =
0, then dim(V ) = n− 1. So P ∈ V is singular iff

∂f

∂X1

(P ) = · · · = ∂f

∂Xn

(P ) = 0.
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Alternatively, set MP := {f ∈ K̄[V ] : f(P ) = 0}. Then MP is a maximal ideal of
K̄[V ], for there is an isomorphism

K̄[V ]

MP

∼→ K̄

given by f 7→ f(P ). Then P is nonsingular iff dimK̄(MP/M
2
P ) = dim(V ).

Example. Let V1 : Y 5 = X4 − X and V2 : Y 4 = X3 + X2 and P = (0, 0). Then
MP is generated by X and Y ; M2

P is generated by X2, Y 2, and XY . For V1, we have
X = Y 5−X5 ≡ 0 (mod M2

P ), so dimK(MP/M
2
P ) = 1, and V1 is smooth at P . For V2,

there are no nontrivial relations between X and Y modulo M2
P , so dimK̄MP/M

2
P = 2,

so V2 is singular at P .

Definition 1.7 The local ring K̄[V ]P of V at P is the localization of K̄[V ] at MP ;
i.e. K̄[V ]P = {F ∈ K̄(V ) : F = f/g with f, g ∈ K̄[V ] and g(P ) 6= 0}.

1.2 Projective Varieties
Definition 1.8 (Projective n-space) Pn or Pn(K̄) is the set of all (n + 1)-tuples
(x0, . . . , xn) ∈ An+1 such that at least one xi 6= 0, modulo the equivalence relation
(x0, . . . , xn) ∼ (λx0, . . . , λxn) for all λ ∈ K̄×. Write [x0, . . . , xn] for the equivalence
class of (x0, . . . , xn). We call these homogeneous coordinates of the corresponding
point in Pn. Pn(K) := {[x0, . . . , xn] ∈ Pn : xi ∈ K, 0 ≤ i ≤ n}, the set of K-rational
points of Pn.

Definition 1.9 Say that a polynomial f ∈ K̄[X] = K̄[X0, . . . , Xn] is homogeneous
of degree d if f(λX0, . . . , λXn) = λdf(X0, . . . , Xn) for all λ ∈ K̄. Say that an ideal I
of K̄[X] is homogeneous if it is generated by homogeneous polynomials.

Definition 1.10 A projective algebraic set is any set of the form VI := {P ∈ Pn :
f(P ) = 0 for all homogeneous f ∈ I}, for a homogeneous ideal I in K̄[X]. If V
is a projective algebraic set, we define I(V ) := {f ∈ K̄[X] : f is homogeneous and
f(P ) = 0 for all P ∈ V }, the homogeneous ideal of V . Say that V is a projective
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algebraic variety if I(V ) is a prime ideal of K̄[X].

Consider the maps φi : An → Pn given by (x1, . . . , xn) 7→ (x1, . . . , xi, 1, xi+1, . . . , xn).
If V is a projective variety, then V ∩ φi(An) is an affine variety.

Example. V : X3 + Y 2 = 1. This gets sent to X3 + Y 2Z = Z3.

Example. X2Z + Z3 + Y 2 = 0. Dividing by Z3 gives(
X

Z

)2

+ 1 +

(
Y

Z

)2

= 0.

Definition 1.11 Suppose V1, V2 ⊆ Pn are projective varieties. A rational map from
V1 to V2 is a map of the form φ : V1 → V2 given by P 7→ [f0(P ), . . . , fn(P )], where
f0, . . . , fn ∈ K̄(V1), at every point P ∈ V1 at which f0, . . . , fn are all defined. Say
that φ is regular (or defined) at P ∈ V1 if there exists g ∈ K̄(V1) such that gfi is
regular at P and gfi(P ) 6= 0 for some i. A morphism is a rational map which is
regular at every point. We say that V1 ' V2 if there are morphisms ϕ : V1 → V2 and
ψ : V2 → V1 such that ψ ◦ ϕ = idV1 and ϕ ◦ ψ = idV2 .
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Chapter 2

A Crash Course on Algebraic Curves

Definition 2.1 For us a curve is an irreducible projective variety of dimension 1, de-
fined over K. K(C) is the function field of C. (We have a map C → P1, and K(C)/K
has transcendence degree 1.) If P ∈ C(K), set MP = {g ∈ K(C) | g(P ) = 0}. (Note
that MP is the maximal ideal of K[C]P , the local ring of C at P .)

Given f ∈ K(C)×, we say that ordP (f) = i if f ∈ M i
P and f 6∈ M i+1

P . Div(C) is the
free abelian group generated by C(K̄), or{∑

niPi

∣∣∣ni ∈ Z, Pi ∈ C(K̄)
}
.

So we have a divisor (f) = div(f) =
∑

P ordP (f) · P . This gives us a map K(C)× →
Div(C).

Theorem 2.2 Let (f) =
∑

P ordP (f) · P . Then

(1) deg(f) :=
∑

P ordP (f) = 0.

(2) (f) = 0 iff f ∈ K×.

Reasons.

(1) A nonconstant f ∈ K̄(C) gives a map f : C → P1 given by

P 7→

{
[f(P ), 1] if f is regular at P ,
[1, 0] otherwise.

Then (f) = f ∗{{0} − {∞}}, and this last divisor has degree zero.

6



(2) If (f) = 0, then f has no poles. So the map f : C → P1 is not surjective, and
therefore is constant (see below).

Div0(C) is the set of divisors of degree zero. Set

Pic0
K̄(C) =

Div0(C)

{(f) | f ∈ K̄(C)×}

— this carries the structure of an abelian variety.

More Facts. Suppose ϕ : C1 → C2 is a rational map.

(a) If P ∈ C1 is a smooth point, then ϕ is regular at P .

(b) So, if C1 is smooth, then ϕ is a morphism.

Proof. Let ϕ = [f0, . . . , fn], fi ∈ K̄(C). Choose a uniformizer t ∈ K̄(C1) at P (i.e.
a generator of MP ). (We can do this, as P is a smooth point, by hypothesis.) If
α := min0≤i≤n{ordP (fi)}, then

• ordP (t−αfi) ≥ 0 for all i, and

• ordP (t−αfj) = 0 for some j.

Hence each t−αfi is regular at P , and t−αfj(P ) 6= 0. Therefore ϕ is regular at P .

(c) If ϕ is a morphism, then ϕ is either constant or surjective (see Hartshorne,
Chapter II, Proposition 6.8).

From a morphism ϕ : C1 → C2, we obtain a corresponding morphism of function
fields ϕ∗ : K(C2)→ K(C1) given by f 7→ f ◦ϕ. In fact, there is a 1–1 correspondence
(actually an equivalence of categories){

nonconstant morphisms
ϕ : C1 → C2

}
←→

{
injections ϕ∗ : K(C2)→ K(C1)

fixing K

}
.
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Definition 2.3 The degree of ϕ is defined by

deg(ϕ) =

{
[K(C1) : ϕ∗K(C2)] if ϕ is nonconstant,
0 if ϕ is constant.

(Define the separable and inseparable degrees degs(ϕ) and degi(ϕ) similarly.) The
map ϕ∗ : K(C1)→ K(C2) is defined by ϕ∗ = (ϕ∗)−1 ◦NK(C1)/ϕ∗K(C2).

Fact. If ϕ : C1 → C2 is a map of degree one between two smooth curves, then ϕ is
an isomorphism.

2.1 Local Behavior
Let ϕ : C1 → C2 be a nonconstant morphism. Let P ∈ C1, and let tϕ(P ) be a local
uniformizer at ϕ(P ) ∈ C2. The ramification index eϕ(P ) of ϕ at P is defined by

eϕ(P ) := ordP (ϕ∗tϕ(P )).

(So eϕ(P ) ≥ 1.) Say that ϕ is unramified at P if eϕ(P ) = 1. Say that ϕ is unram-
ified if it is unramified at every point of C1.

Theorem 2.4

(1) For all but finitely many points Q of C2, we have #ϕ−1(Q) = degs(ϕ). (Here
we are counting the number of points over K̄.) (cf: only finitely many primes
ramify in a finite extension L/K of number fields.)

(2)
∑

P∈ϕ−1(Q) eϕ(P ) = deg(ϕ). (cf:
∑
eifi = [L : K] for number fields.)

(3) If ψ : C2 → C3 is another nonconstant map, and P ∈ C1, then eψ◦ϕ(P ) =
eϕ(P )eψ(ϕ(P )). (cf: multiplicativity of ramification in towers of number fields.)
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2.2 The Frobenius Morphism
Suppose now that K is perfect with char(K) = p > 0, and set q = pr. For any
polynomial f , we may form the polynomial f (q) by raising each coefficient of f to the
qth power. So, given a curve C/K, we obtain the curve C(q)/K. There is a natural
map φ : C → C(q) given by [x0, . . . , xn] 7→ [xq0, . . . , x

q
n]. φ is called the qth power

Frobenius morphism.

Theorem 2.5 Notation as above.

(1) φ∗(K(C(q))) = K(C)q = {f q : f ∈ K(C)}.

(2) φ is purely inseparable.

(3) deg(φ) = q.

(4) Suppose that ψ : C1 → C2 is a map of smooth curves. Then ψ factors as

C1
φ→ Cq

1
λ→ C2,

where q = degi(ψ), φ is the qth power Frobenius map, and λ is separable.

(See Silverman II, §2.)

2.3 Divisors
Div(C) =

{
D =

∑
P∈C nP (P )

∣∣nP ∈ Z and nP = 0 for almost all P
}
, i.e. Div(C) is

the free abelian group generated by the points on C. The degree of D is deg(D) :=∑
P∈C nP . Div0(C) = {D ∈ Div(C) | deg(D) = 0}. D ∈ Div(C) is principal if

D = (f) = div(f) for some f ∈ K̄(C)×. Say that D1 and D2 are linearly equiv-
alent, and write D1 ∼ D2, if D1 − D2 is principal. Pic(C) := Div(C)/{principal
divisors} is the Picard group of C.
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Example. Every divisor of degree zero on P1 is principal. For supposeD =
∑
nP (P ),

deg(D) = 0, with P = [xP , yP ] ∈ P1. Then D is the divisor of the function∏
P∈P1

(yPx− xPy)nP .

We have an exact sequence

1→ K̄× → K̄(C)×
div→ Div0(C)→ Pic0(C)→ 0.

c.f.: if L is a number field, we have an exact sequence

1→ o×L → L× → IL → Cl(oL)→ 0.

Definition 2.6 Suppose ϕ : C1 → C2 is a nonconstant map of smooth curves. Define
the pullback ϕ∗ : Div(C2)→ Div(C1) by

(Q) 7→
∑

P∈ϕ−1(Q)

eϕ(P )(P )

and the pushforward ϕ∗ : Div(C1)→ Div(C2) by (P ) 7→ (ϕP ). Extend to arbitrary
divisors by Z-linearity.

So for example if C is smooth and f ∈ K̄(C) is nonconstant, then we have f : C → P1

given by

P 7→

{
[f(P ), 1] if f is regular at P ,
[1, 0] otherwise.

Then div(f) = f ∗((0)− (∞)).

Properties.

(a) deg(φ∗D) = (degϕ)(degD) for all D ∈ Div(C2).

(b) φ∗ div(f) = div(φ∗f) for all f ∈ K̄(C2)
×.
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(c) deg(φ∗D) = deg(D) for all D ∈ Div(C1).

(d) φ∗ div(f) = div(φ∗(f)) for all f ∈ K̄(C1)
×.

(e) φ∗ ◦ φ∗ is multiplication by deg(φ) on Div(C2).

(f) If ψ : C2 → C3 is another map between smooth curves, then (ψ ◦ φ)∗ = φ∗ ◦ ψ∗
and (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

2.4 Differentials
Definition 2.7 Let C/K be a curve. The space of differential forms ΩC on C is
the K̄(C)-vector space generated by the symbols {dx | x ∈ K̄(C)} subject to the
relations

(a) d(x+ y) = dx+ dy for all x, y ∈ K̄(C).

(b) d(xy) = x dy + y dx.

(c) da = 0 for all a ∈ K̄.

If ϕ : C1 → C2 is a nonconstant morphism of curves, then there is a natural map
ϕ∗ : ΩC2 → ΩC1 given by ∑

fi dxi 7→
∑

(ϕ∗fi) d(ϕ
∗xi).

Theorem 2.8

(1) ΩC is a 1-dimensional K̄(C)-vector space.

(2) ϕ : C1 → C2 is separable iff ϕ∗ : ΩC2 → ΩC1 is nonzero (and so is injective).

Suppose that P ∈ C, and let t ∈ K̄(C) be a local uniformizer at P .

(3) Suppose ω ∈ ΩC . Then there exists a unique function g ∈ K̄(C) (depending on
ω and t) such that ω = g dt. Set g := ω

dt
.

(4) If f ∈ K̄(C) is regular at P , then df
dt

is regular at P also.
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(5) ordP (ω) := ordP
(
ω
dt

)
depends only upon ω and P and not upon t.

(6) Suppose that x ∈ K̄(C) with K̄(C)/K̄(x) separable, with x(P ) = 0. Then
ordP (f dx) = ordP (f) + ordP (x)− 1 for all f ∈ K̄(C).

(7) ordP (ω) = 0 for all but finitely many points P ∈ C.

We may attach a divisor to ω ∈ ΩC as follows:

Definition 2.9 Suppose that ω ∈ ΩC . Then

div(ω) :=
∑
P∈C

ordP (ω)(P ).

ω is regular or holomorphic if ordP (ω) ≥ 0 for all P ∈ C. ω is nonvanishing if
ordP (ω) ≤ 0 for all P ∈ C.

Definition 2.10 Suppose ω ∈ ΩC , ω 6= 0. The image of ω in Pic(C) is called the
canonical divisor class on C. (Note that this definition makes sense because ΩC

is a 1-dimensional K̄(C)-vector space.) Any divisor in this class is called a canonical
divisor.

Example. Let C = P1. Suppose that t is a coordinate function on P1. What
is div(dt)? If α ∈ K̄, then t − α is a uniformizer at α. Then dt = 1 · d(t − α),
so ordα(dt) = 0. At ∞ ∈ P1, 1/t is a uniformizer. Then dt = −t2 d

(
1
t

)
, so

ord∞(dt) = ord∞
(
−t2 d

(
1
t

))
= −2. Thus div(dt) = −2(∞). So if ω ∈ ΩP , ω 6= 0,

then deg(div(ω)) = deg(div(dt)) = −2. So ω is nonholomorphic.

We say that a divisor D =
∑

P nP (P ) ∈ Div(C) is effective or positive, and we
write D ≥ 0, if nP ≥ 0 for all P ∈ C. If D1, D2 ∈ Div(C), then D1 ≥ D2 iff
D1 −D2 ≥ 0.

Example. div(f) ≥ −n(P ) means that f has a single pole of order at most n at P .
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Definition 2.11 Suppose that D ∈ Div(C). Define

L (D) := {f ∈ K̄(C)× : div(f) ≥ −D} ∪ {0}.

Then L (D) is a finite-dimensional K̄-vector space (exercise). Set `(D) := dimK̄ L (D).

Proposition 2.12 Let D ∈ Div(C).

(a) If deg(D) < 0, then L (D) = {0}, and `(D) = 0.

(b) L (D) is a finite-dimensional K̄-vector space.

(c) If D′ ∼ D, then L (D) ' L (D′), and `(D) = `(D′).

Example. Suppose thatKC ∈ Div(C) is a canonical divisor on C, withKC = div(ω),
say. Then f ∈ L (KC) iff div(f) ≥ − div(ω) iff div(fω) ≥ 0 iff fω is holomorphic.
But every differential on C is of the form fω, so we have

L (Kc) ' {ω ∈ ΩC : ω is holomorphic}.

Theorem 2.13 (Riemann-Roch) Let C be a smooth curve and KC a canonical di-
visor on C. There is an integer g ≥ 0 (the genus of C) such that for every divisor
D ∈ Div(C), we have `(D)− `(KC −D) = deg(D)− g + 1.

Corollary 2.14

(a) `(KC) = g.

(b) deg(KC) = 2g − 2.

(c) If deg(D) > 2g − 2, then `(D) = deg(D)− g + 1.

Proof.

(a) Take D = 0 in Riemann-Roch.
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(b) Take D = KC in Riemann-Roch, and apply (a).

(c) Observe that from (b), we have deg(D) > 2g − 2, so deg(KC −D) < 0, and so
`(KC −D) = 0. Now apply Riemann-Roch.

Example. Let C = P1. There are no holomorphic differentials on P1, so `(P1) = 0.
Thus the genus of P1 is 0. Applying Riemann-Roch gives `(D) − `(−2(∞) − D) =
deg(D)+1. If deg(D) ≥ −1, then `(−2(∞)−D) = 0, and we have `(D) = deg(D)+1.

Example. Suppose that char(K) 6= 2 and that e1, e2, e3 ∈ K̄ are distinct. Let

C : y2 = (x− e1)(x− e2)(x− e3). (†)
Exercise: Show that C is smooth and has a single point P∞ = [0, 1, 0] at ∞. Set
Pi = (ei, 0) ∈ C for 1 ≤ i ≤ 3.

(a) For example,

x− e1 =
y2

(x− e2)(x− e3)
,

and div(x− e1) = 2(P1)− 2(P∞). Now div(x− ei) = 2(Pi)− 2(P∞) (1 ≤ i ≤ 3)
and (†) give

div(y) = (P1) + (P2) + (P3)− 3(P∞).

(b) Let’s compute div(dx). [Recall: if β ∈ K̄(C) with K̄(C)/K̄(β) separable and
β(P ) = 0, then

ordP (α dβ) = ordP (α) + ordP (β)− 1

for all α ∈ K̄(C) (Theorem 2.7(c)).] Now we have (1 ≤ i ≤ 3)

dx = d(x− ei) = −x2 d

(
1

x

)
.

Thus ordPi
(dx) = ordPi

(d(x− ei)) = 1, and

ordP∞(dx) = ordP∞

(
−x2 d

(
1

x

))
= ordP∞(−x2) + ordP∞ d

(
1

x

)
= ordP∞(−x2) + ordP∞

(
1

x

)
− 1

= −4 + 2− 1

= −3.
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At other points Q ∈ C, the map x : C → P1 given by

P 7→

{
[x(P ), 1] if x is regular at P ,
[1, 0] otherwise,

is unramified, and so x−x(Q) is a uniformizer at Q. So ordQ(dx) = ordQ(d(x−
x(Q))) = 0. Hence

div(dx) = (P1) + (P2) + (P3)− 3(P∞) = div(y).

Therefore div
(
dx
y

)
= 0, and so dx

y
is a nonvanishing holomorphic differential on

C.

(c) div
(
dx
y

)
= 0, so KC = 0. Thus g, the genus of C, is equal to `(KC) = `(0) = 1.

Riemann-Roch tells us that `(D) = deg(D) if deg(D) ≥ 1.

Some special cases.

(i) Let P ∈ C. Then `((P )) = 1, so L ((P )) = K̄ (since certainly K̄ ⊆ L ((P ))!).
So there are no functions on C that have a single simple pole.

(ii) `(2(P∞)) = 2. A basis for L (2(P∞)) is {1, x}.

(iii) A basis for L (3(P∞)) is {1, x, y}. A basis for L (4(P∞)) is {1, x, y, x2}.

(iv) Observe that {1, x, y, x2, xy, y2, x3} ⊆ L (6(P∞)). But `(6(P∞)) = 6, so these
functions are R-linearly dependent.

Theorem 2.15 (Hurwitz Genus Theorem). Let ϕ : C1 → C2 be a nonconstant
separable map of smooth curves with gi the genus of Ci. Then

2g1 − 2 ≥ deg(ϕ)(2g2 − 2) ≥ deg(ϕ)(2g2 − 2) +
∑
P∈C1

(eϕ(P )− 1),

with equality iff either

(i) char(K) = 0, or

(ii) char(K) = p > 0 and p - eϕ(P ) for all P ∈ C1.
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Proof. Let ϕ : C1 → C2 be given by P 7→ Q := ϕ(P ), and let ω ∈ ΩC2 , ω 6= 0. If ϕ
is separable, then ϕ∗ω 6= 0. The strategy is to compare ordP (ϕ∗ω) with ordQ(ω) and
use deg(div(ϕ∗ω)) = 2g1 − 2.

Set ω = f dt, with t ∈ K̄(C2) a uniformizer at Q. Then ϕ∗t = use, e := eϕ(P ), s a
uniformizer at P , and U(P ) 6= 0. Then

ϕ∗ω = (ϕ∗f) d(ϕ∗t) = (ϕ∗f) d(use) = (ϕ∗f) ·
(
euse−1 +

du

ds
se
)
ds.

Now if u is regular at P , then du
ds

is regular at P , i.e. ordP
(
du
ds

)
≥ 0, so ordP (ϕ∗ω) ≥

ordP (ϕ∗f) + e− 1, with equality iff e 6= 0 in K. Also ordP (ϕ∗f) = eϕ(P ) ordQ(f) =
eϕ(P ) ordQ(ω). Hence

deg(div(ϕ∗ω)) ≥
∑
P∈C1

[eϕ(P ) ordϕ(P )(ω) + eϕ(P )− 1]

=
∑
Q∈C2

∑
P∈ϕ−1(Q)

eϕ(P ) ordQ(ω) +
∑
P∈C1

(eϕ(P )− 1)

= (degϕ∗)(deg(div(ω))) +
∑
P∈C1

(eϕ(P )− 1).

Hence
2g1 − 2 ≥ (degϕ)(2g2 − 2) +

∑
P∈C1

(eϕ(P )− 1).
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Chapter 3

The Geometry of Elliptic Curves

Definition 3.1 An elliptic curve E/K is a smooth curve over K, of genus 1, with a
specified point O ∈ E(K).

Example. (Weierstraß Curves). Assume char(K) 6= 2 or 3. In P2, take the curve C
(which we suppose to be smooth)

y2z + a1xyz + a3yz
2 − x3 − a2x

2z − a4xz
2 − a6z

3 = 0,

ai ∈ K for all i. The affine equation is

y2 + a1xy + a3y = x3 + a2x
2 + a4 + a6.

Set O := [0, 1, 0] and f(x, y) := y2 + a1xy + a3y − (x2 + a2x
2 + a4x + a6). Define a

differential
ω =

dx

2y + a1x+ a3

=
dy

3x2 + 2a2x+ a4 − a1y
.

[Note: We have equality above because the left side is dx
fy(x,y)

and the right side is
−dy

fx(x,y)
, and equality results from fx(x, y) dx+ fy(x, y) dy = 0.]

We claim that ω is holomorphic and nonvanishing. If P = (x0, y0) were a pole of
ω, then we would have fx(x0, y0) = fy(x0, y0) = 0, which is a contradiction since C
is smooth. Consider the map C → P1 given by [x, y, 1] 7→ [x, 1] — this map is of
degree 2. Thus ordP (x− x0) ≤ 2. ordP (x− x0) = 2 iff f(x0, y) has a double root iff
fy(x0, y0) = 0. Now ω = dx

fy(x,y)
= d(x−x0)

fy(x,y)
, so

ordP (ω) = ordP (x− x0)− ordP (fy)− 1 = 0.
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We now check P = 0. ordO(x) = −2 and ordO(y) = −3. So if t is a uniformizer at
O, then x = t−2F and y = t−3G, where F (O) 6= 0 or ∞, and G(O) 6= 0 or ∞. So

ω =
dx

fy(x, y)
=

(
−2t−3F + t−2F ′

2t−3G+ a1t−2F + a3

)
dt

(where F ′ = dF
dt

). Since F is regular at O, dF
dt

is also regular at O (Theorem 2.8(4)).
Thus −2F+tF ′

2G+a1tF+a3t3
is regular and nonvanishing at O (char(K) 6= 2!). Thus ordO(ω) = 0

as desired. [If char(K) = 2, then in fact the same assertion holds, as may be seen by
calculating with ω = −dy

fx(x,y)
instead.] Hence ω is holomorphic and nonvanishing (i.e.

(ω) = 0). Now apply Riemann-Roch: deg(ω) = 2g − 2, so g = 1.

What happens if a Weierstraß curve is singular?

Lemma 3.2 If C is defined by a Weierstraß equation and is not smooth, then there
is a map C → P1 of degree 1.

Proof. Suppose (0, 0) is the singular point. Then ∂f
∂x

(0, 0) = ∂f
∂y

(0, 0) = 0. The
Weierstraß equation for C is of the form y2 + a1xy + x3 + a2x

2. Consider the map
C → P1 given by (x, y) 7→ y

x
. We have(y

x

)2

+ a1

(y
x

)
= x+ a2,

and so there is exactly one inverse image of each y
x
, as required.

Theorem 3.3 If E/K is an elliptic curve, then there exist a1, a2, a3, a4, a6 ∈ K such
that E is isomorphic to the Weierstraß elliptic curve y2 + a1xy + a3y = x3 + a2x

2 +
a4x+ a6.

Proof. Recall that L (d(O)) = {all functions on E with no poles except possibly a
pole of order at most d atO}. Riemann-Roch tells that `(d(O)) = d−g+1 if d > 2g−2,
which is d if d ≥ 1 (since here g = 1). Applying this tells us that L ((O)) = K̄.
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L (2(O)) = 〈1, x〉, where x ∈ L (2(O)) −L ((O)), and so ordO(x) = −2, and x has
no other poles. L (3(O)) = 〈1, x, y〉, where y ∈ L (3(O))−L (2(O)), and so ordO(y) =
−3, and y has no other poles. L (4(O)) = 〈1, x, y, x2〉. L (5(O)) = 〈1, x, y, x2, xy〉.
L (6(O)) = 〈1, x, y, x2, xy, x3〉 or 〈1, x, y, x2, xy, y2〉, and we know that x3 and y2 are
not independent, since `(6(O)) = 6. So {1, x, y, x2, xy, x3, y2} are linearly dependent.
Hence we can write A0y

2 + A1xy + A3y = A′0x
3 + A2x

2 + A4x + A6 with A0A
′
0 6= 0.

Without loss of generality, A0 = 1. Perform the transformation x 7→ A′0x, y 7→ A′0y;
then without loss of generality A0 = A′0 = 1. So the equation becomes

C : y2 + A1xy + A3y = x2 + A2x
2 + A4x+ A6.

Define a map ϕ : E → C via ϕ∗ : x 7→ x, y 7→ y. To show that ϕ is an isomorphism,
it suffices to show that ϕ is of degree 1, and C is smooth. We have x : E → P1 with
deg(x) = 2. So [K(E) : K(x)] = 2. Similarly, since deg(y) = 3, [K(E) : K(y)] = 3.
Hence [K(E) : K(x, y)] divides both 2 and 3, and so K(E) = K(x, y). Thus

deg(ϕ) = [K(E) : ϕ∗K(C)] = [K(E) : K(x, y)] = 1.

Suppose now that C is not smooth. Then there exists a map ψ : C → P1 of degree
1 (Lemma 3.2), and so ψ ◦ ϕ is an isomorphism, since both E and P1 are smooth.
This is impossible, since P1 does not have genus 1. Thus C is smooth, and so ϕ is an
isomorphism.

Corollary 3.4 The Weierstraß coordinates x and y on E are unique up to x 7→ u2x′+r
and y 7→ u3y′ + su2x′ + t, with u, r, s, t ∈ K, u 6= 0.

Proof. Suppose {x, y} and {x′, y′} are two sets of Weierstraß coordinates on E. Then
ordO(x) = ordO(x′) = −2, and ordO(y) = ordO(y′) = −3, so {1, x} and {1, x′} are
bases of L (2(O)), and {1, x, y} and {1, x′, y′} are bases of L (3(O)). Thus there exist
u1, u2, r, s2, t ∈ K with u1u2 6= 0 such that x = u1x

′+ r and y = u2y
′+ s2x

′+ t. (x, y)
and (x′, y′) both satisfy Weierstraß equations with coefficients of Y 2 and X3 equal to
1, so u3

1 = u3
2. Now set u = u2/u1 and s = s2/u

2 to obtain the result.
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3.1 The Addition Law on E

Proposition 3.5 If D ∈ Div0
K(E), then there is a unique point P ∈ E(K) such that

D ∼ (P )−(O). (Recall that A ∼ B iff there exists f ∈ K(E) such that (f) = A−B.)

Proof. It follows from the Riemann-Roch Theorem that `(D + (O)) = 1, since
deg(D) = 0. Thus there exists f ∈ L (D + (O)) with (f) ≥ −D − (O). Since
deg(f) = 0, there exists a point P such that (f) = −D − (O) + (P ). Thus
D ∼ (P ) − (O), and this demonstrates the existence of P . Next, observe that if
D ∼ (P ′) − (O), then there exists g ∈ K(E) such that (g) = −D − (O) + (P ′), so
g ∈ L (D + (O)), so g = cf for some c ∈ K×, since `(D + (O)) = 1. Thus (g) = (f),
and so (P ) = (P ′).

Thus we have a map σ : Pic0
K(E)→ E(K) given by [D] 7→ P , where D ∼ (P )− (O).

σ is plainly surjective. It is injective because if σ(D) = O, then D ∼ (O). The inverse
of σ is the map κ : E(K)→ Pic0

K(E) given by P 7→ [(P )− (O)].

3.2 Another Description of the Addition Law
We define a composition law ⊕ on E as follows: Let P,Q ∈ E, let L be the line con-
necting P and Q, and let R be the third point of intersection of L with E (Bézout’s
Theorem). Let L′ be the line connecting R and O. P ⊕ Q := the point on E such
that L′ intersects E at R, O, and P ⊕Q.
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To show that this law of composition is the same as the one defined above, it suffices
to show that κ(P ⊕ Q) = κ(P ) + κ(Q). (Here “+” means addition of divisor classes
in Pic0

K(E).) Let f = αX + βY + γZ = 0 be the equation of the line L′ connecting
R and O. Then (f) = (P ) + (Q) + (R)− 3(O), (f ′) = (R) + (P ⊕Q)− 2(O) (since f
and f ′ have no poles in the affine plane). Thus(

f ′

f

)
= (P ⊕Q)− (P )− (Q) + (O) ∼ (O),

and this implies that κ(P ⊕Q)− κ(P )− κ(Q) = 0.

The addition law on E is a morphism. We have that (see Silverman III, §2.3)

(x1, y1) + (x2, y2) =

(
∗

(x2 − x1)3
,

∗
(x2 − x1)3

)
if x1 6= x2. So the addition map is regular except possibly at (P, P ), (P,−P ), (P,O),
and (O,P ). To take care of these points: ForQ ∈ E(K̄), consider the map τQ : E → E
given by P 7→ P +Q; this is a morphism (even an isomorphism!). Now look at

E × E
(τQ1

,τQ2
)

−→ E × E +−→ E
τ−Q1−Q2−→ E

given by

(P1, P2) 7→ (P1 +Q1, P2 +Q2) 7→ P1 +Q1 + P2 +Q2 7→ P1 + P2.

Choose Q1 and Q2 to avoid the “bad set.”

3.3 Isogenies
Definition 3.6 An isogeny from E1 to E2 (elliptic curves) is a morphism ϕ : E1 → E2

with ϕ(O) = O. (In particular, according to this definition, E1 → O is an isogeny.)
Say that E1 and E2 are isogenous if there is a nonconstant isogeny ϕ : E1 → E2.

(If ψ : E1 → E2 is a morphism, then τ−ψ(O) is an isogeny.)
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Theorem 3.7 If ϕ : E1 → E2 is an isogeny, then ϕ is a group homomorphism, i.e.
ϕ(P +Q) = ϕ(P ) + ϕ(Q).

Proof. This follows from the fact that the following diagram commutes:

E1(K̄)
∼ //

ϕ

��

Pic0
K̄(E1)

ϕ∗
��

E2(K̄)
∼ // Pic0

K̄(E2)

and three of the arrows (i.e. all except possibly ϕ) are group homomorphisms:

P
� //

_

��

(P )− (O)
_

��
ϕ(P ) � // (ϕ(P ))− (ϕ(O)) (ϕ(P ))− (O)

Notation. Set Hom(E1, E2) = {isogenies E1 → E2}. This is a group under addition
on E2. End(E) = Hom(E,E) is a ring under addition and composition.

Examples.

1. Let n ∈ Z. [n] is multiplication by n, [n] ∈ End(E).

2. If char(K) = p > 0, then the Frobenius map ϕ : x 7→ xr on K induces a
map ϕ : E → E(p) via (x, y) 7→ (xp, yp). If K = Fq (q is a power of p), then
ϕ(q) : E → E, and ϕ(q) is an endomorphism of degree q.

3. Consider the curve y2 = x3 − x, and suppose
√
−1 ∈ K. Then we may define a

map ϕ : E → E by (x, y) 7→ (−x, iy), where i =
√
−1. Note that ϕ 6= [n] for

any n, since ϕ2 = [−1].

Theorem 3.8 [n] is nonzero for all n 6= 0. Hom(E1, E2) is a torsionfree Z-module.
End(E) is an integral domain of characteristic 0. Define deg([0]) = 0. Then deg(ψ ◦
ϕ) = deg(ψ) deg(ϕ).
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Proof. We make the following claims:

(1) There exists P ∈ E(K̄) with 2P 6= O.

(2) There exists Q ∈ E(K̄), Q 6= O, with 2Q = O.

Note that (1)implies that [2] 6= 0. If n is odd, and Q is as is (2), then [n]Q = Q 6= O.
So [n] 6= 0. (This implies that [n] 6= 0 for all n 6= 0 — any map between two smooth
curves is either constant or surjective.) To see that End(E) is an integral domain,
suppose that ϕ ◦ ψ = 0. Then deg(ϕ) deg(ψ) = 0, so degϕ = 0 or degψ = 0, and so
ϕ = 0 or ψ = 0. Hence End(E) is an integral domain. A similar arguments shows
that End(E) is of characteristic 0, and that Hom(E1, E2) is Z-torsionfree.

We now prove the claim.

x(2P ) =
x4 − b4x2 − 2b6x− b8
4x3 + b2x2 + 2b4x+ b6

(see III, §2.3 in Silverman). There exists an x ∈ K̄ such that this function has
no pole at x. Choose the corresponding y ∈ K̄. Then 2(x, y) 6= O. This proves
(1). For (2), we want x ∈ K̄ which is a pole of x(2P ). Check that the polynomial
4x3 + b2x

2 + 2b4x + b6 does not divide x4 − b4x2 − 2b6x− b8. Choose such an x and
the corresponding y. Then (x, y) 6= O, but 2(x, y) = O.

Proposition 3.9 Let ϕ : E1 → E2 be a nonconstant isogeny. Then

(1) #ϕ−1(Q) = degs ϕ. eϕ(P ) = degi ϕ. (P ∈ ϕ−1(Q), say.)

(2) The map ker(ϕ)→ Aut(K ′(E1)/ϕ
∗K ′(E2)) given by R 7→ τ ∗R is an isomorphism.

(Here K ′ is any field big enough to contain the coordinates of all R ∈ ker(ϕ).)

(3) If ϕ is separable, then ϕ is unramified, # kerϕ = degϕ, and K ′(E1)/ϕ
∗K ′(E2)

is Galois.

Proof.
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(1) Plainly #ϕ−1(Q) = # kerϕ for any Q since ϕ is a group homomorphism. But
#ϕ−1(Q) = degs ϕ for almost all Q (Theorem 2.4(1)), and so it is equal to degs ϕ
always. Next, we claim that eϕ(P ) is independent of the choice of P ∈ ϕ−1(Q).
For if R ∈ kerϕ, then

eϕ◦τR(P ) = eτR(P )eϕ(τR(P )) = eτR(P )eϕ(P +R),

and eτR(P ) = 1, since τR is an isomorphism. Now observe that eϕ◦τR(P ) = eϕ(P )
since τR = ϕ (remember R ∈ kerϕ!). We have∑

P∈ϕ−1(Q)

eϕ(P ) = degϕ = degi ϕ degs ϕ,

i.e. eϕ(P ) degs ϕ = degi ϕ degs ϕ, so eϕ(P ) = degi ϕ.

(2) Since ϕ ◦ τR = ϕ, we have τ ∗Rϕ
∗ = ϕ∗ (induced maps of function fields).

So τ ∗R acts as the identity on ϕ∗K ′(E2). Hence we have a map kerϕ →
Aut(K ′(E1)/ϕ

∗K ′(E2)); the left side has order degs ϕ, while the right side has
order at most degs ϕ. So it suffices to show that the map is injective.

Suppose that τ ∗R = id on K ′(E1). This implies that for all f ∈ K ′(E1), we
have f(P + R) = f(P ) for all P ∈ E1(K̄). In particular, x(P + R) = x(P ),
y(P + R) = y(P ), so P + R = P , so R = O. Hence the map is both injective
and surjective, and so is an isomorphism.

Corollary 3.10 Suppose that ϕ : E1 → E2 and ψ : E1 → E3 are isogenies, with ϕ
separable and kerϕ ⊆ kerψ. Then there exists an isogeny λ : E2 → E3 with λ◦ϕ = ψ.

E1
ϕ //

ψ

��

E2

λ~~|
|

|
|

E3

Proof. Let K ′ be a field of rationality for kerψ. Theorem 3.9 implies that

ϕ∗K ′(E2) = K ′(E1)
{τ∗R:R∈kerϕ}.

ψ∗K ′(E3) is fixed by all τ ∗R with R ∈ kerψ. Thus we have K ′(E1) ⊇ ϕ∗K ′(E2) ⊇
ψ∗K ′(E3). This implies that there exists λ : E2 → E3 such that λ ◦ ϕ = ψ, with
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λ(O) = λ(ϕ(O)) = ψ(O) = O.

Theorem 3.11 Given a finite subgroup Φ of E(K̄), there is an elliptic curve E ′ and
a separable isogeny ϕ : E → E ′ with kerϕ = Φ. Furthermore, (ϕ,E ′) is unique up to
isomorphism. We write E ′ = E/Φ.

Proof. Set G = {τ ∗R : R ∈ Φ}. Then G acts as a group of automorphisms of K̄(E),
and, via Galois theory, we have that [K̄(E) : K̄(E)G] = #Φ. Thus there exists a non-
singular curve C/K̄ and a finite morphism ϕ : E → C such that ϕ∗K̄(C) = K̄(E)G.

We claim that K̄(E)/K̄(C) is unramified. To see that this claim is true, suppose
that Q ∈ C(K̄). Then if ϕ(P ) = Q, then we have that ϕ(P + R) = Q for all R ∈ Φ.
#ϕ−1(Q) ≥ #Φ, #ϕ−1(Q) = degs ϕ. Since∑

P∈ϕ−1(Q)

eϕ(P ) = deg(ϕ),

this implies that eϕ(P ) = 1 for all P ∈ ϕ−1(Q), and that ϕ is separable.

Now apply the Hurwitz genus formula (Theorem 2.15): 2gE − 2 = degϕ(2gC − 2),
so gC = 1. Now define OC = ϕ(OE). Then C is an elliptic curve, and ϕ is an
isogeny with kerϕ = Φ. Uniqueness follows from the fact that if kerϕ ⊆ kerψ, with
ϕ separable, then we have

E
ϕ //

ψ   @
@@

@@
@@

@ E1OO

λ,λ−1

���
�
�

E2

(cf Corollary 3.10).

3.4 Invariant Differentials
Now let E/K be an elliptic curve with Weierstraß equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.
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Set
ω =

dx

2y + a1x+ a3

=
dy

3x2 + 2a2x+ a4 − a1y
.

We showed earlier that (ω) = 0.

Theorem 3.12 If Q ∈ E(K̄), then τ ∗Qω = ω.

Proof. Since ΩE is 1-dimensional, we have that τ ∗Qω = fQω, fQ ∈ K̄(E)×. Since τ ∗Q
is an isomorphism, it follows that (τ ∗Qω) = 0, whence (fQ) + (ω) = 0, so (fQ) = 0, so
fQ ∈ K̄. We note that Q 7→ fQ ∈ K̄× is a rational map E → P1 (this is clear because
we could do everything explicitly and express fQ as a rational function of x(Q) and
y(Q)). This map is not surjective, since it misses 0 and∞. This implies that Q 7→ fQ
is a constant map, and so fQ = fO = 1.

Theorem 3.13 If ϕ, ψ : E → E ′ are isogenies, then ϕ∗ω + ψ∗ω′ = (ϕ+ ψ)∗ω′.

Proof. If f1, f2 ∈ K̄(E) satisfy the Weierstraß equation of E, define

ω(f1, f2) =
df1

2f2 + a1f1 + a3

=
df2

3f 2
1 + 2a2f1 + a4 − a1f2

(so e.g. ω(x, y) = ω, using our earlier notation). We wish to prove that

ω(ϕ∗(x′, y′)) + ω(ψ∗(x′, y′)) = ω((ϕ+ ψ)∗(x′, y′)).

We claim that ω(f1, f2) + ω(g1, g2) = ω((f1, f2), (g1, g2)). Now

ω((f1, f2) + (g1, g2)) = F (f1, f2, g1, g2)ω(f1, f2) +G(f1, f2, g1, g2)ω(g1, g2), (†)

and to establish the claim, we have to show that F and G are identically 1. Take
(g1, g2) = Q ∈ E(K̄) and (f1, f2) = (x, y). Then

ω((f1, f2) + (g1, g2)) = τ ∗Qω = ω.

The right side of (†) is F (x, y,Q)ω = 1 · ω, and this holds for all Q ∈ E(K̄). This
implies that F (f1, f2, g1, g2) is identically 1. Now choose (f1, f2) = Q, (g1, g2) = (x, y)
and use a similar argument to deduce that G(f1, f2, g1, g2) is identically 1.
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Theorem 3.14 [m]∗ω = mω.

Proof. The result is true for 0 and 1, and so, by induction, it’s true for n+ 1, since
we have [n+ 1]∗ω = [n]∗ω + [1]∗ω.

Application. [m] is separable iff (m, char(K)) = 1, or char(K) = 0 and m 6= 0.
[If C1 and C2 are curves, and ϕ : C1 → C2 is a morphism, then ϕ is separable iff
ϕ∗ : ΩC2 → ΩC1 is nonzero (or, equivalently, injective). See Silverman II, 4.2(c).]

Consider the Frobenius isogeny ϕq : E → E(q) given by x 7→ xq. Then ϕ∗dx =
d(xq) = 0, and so ϕ is not separable, since ϕ∗ω = 0. Now suppose that E/Fq; then
ϕq : E → E, and 1 − ϕq is separable, since (1 − ϕq)∗ω = ω. This is useful: Observe
that

E(Fq) = E(F̄q)ϕq = ker(1− ϕq).
Thus #E(Fq) = deg(1− ϕq).

3.5 Dual Isogenies

Suppose that we have an isogeny E ϕ→ E ′. This induces Pic0(E)
ϕ∗← Pic0(E ′). Since

we may identify Pic0(E) with E, we want to think of ϕ∗ as being a map E ′ ϕ
∗
→ E.

Theorem 3.15 Suppose that ϕ : E → E ′ is an isogeny of degree m. Then there
exists a unique ϕ̂ : E ′ → E such that ϕ̂ ◦ ϕ = [m]. Furthermore, ϕ̂ is given by

E ′ ∼→ Pic0(E ′)
ϕ∗→ Pic0(E)

∼→ E.

Proof. We first show uniqueness. Suppose that ϕ̂◦ = ϕ = ϕ̂′ ◦ ϕ = [m]. Then
(ϕ̂ − ϕ̂′) ◦ ϕ = 0. Since ϕ is nonconstant, it follows that ϕ̂ − ϕ̂′ is constant, whence
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ϕ̂ = ϕ̂′.

We now show existence. Suppose that ϕ is separable. Then # kerϕ = m = degϕ,
and so it follows that kerϕ ⊆ ker[m]. Via Corollary 3.10, we see that there is an
isogeny ϕ̂ : E ′ → E such that the following diagram commutes:

E
ϕ //

[m]   A
AA

AA
AA

A E ′

ϕ̂

���
�
�

E

Suppose now that char(K) = p > 0. Then if ω is an invariant differential on E, we
have [p]∗ω = pω = 0 (Theorem 3.14), and so [p] is not separable. Hence [p] = λ ◦ F e,
where λ is separable, F is the Frobenius map x 7→ xp, and e ≥ 1 (Theorem 2.5(4)).
So, we define F̂ = λ ◦F e−1. Now observe that for any isogeny ϕ, we have ϕ = µ ◦F r,
where F is Frobenius and µ is separable. Define ϕ̂ = F̂ r ◦ µ̂. Then

ϕ̂ ◦ ϕ = (F̂ r ◦ µ̂) ◦ (µ ◦ F r) = deg µ · pr = degϕ.

Suppose that Q ∈ E ′(K). What is ϕ̂(Q)? First notice that Q = ϕ(P ) for some
P ∈ E(K̄), and so ϕ̂(Q) = ϕ̂(ϕ(P )) = mP . We have (under the composition
described in the statement of the theorem):

Q 7→ Q−O

7→
∑

S∈ϕ−1(Q)

eϕ(S)S −
∑

R∈ϕ−1(O)

eϕ(R)R

= degi ϕ
∑

R∈kerϕ

(P +R−R)

= (degi ϕ)(degs ϕ)P

= (degϕ)P.

Theorem 3.16 Suppose that ϕ : E1 → E2 is an isogeny. Then

(1) ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [degϕ].

(2) If λ : E0 → E1, then ϕ̂ ◦ λ = λ̂ ◦ ϕ̂.
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(3) If λ : E1 → E2, then ϕ̂+ λ = ϕ̂+ λ̂.

(4) [̂m] = [m].

(5) degϕ = deg ϕ̂.

(6) ˆ̂ϕ = ϕ.

Proof.

(1) By definition, we have ϕ̂ ◦ ϕ = [degϕ]. So

ϕ ◦ ϕ̂ ◦ ϕ = ϕ ◦ [degϕ] = [degϕ] ◦ ϕ,

and thus ϕ ◦ ϕ̂ = [degϕ].

(2) Observe that we have

(λ̂ ◦ ϕ̂) ◦ (ϕ ◦ λ) = λ̂ ◦ [degϕ] ◦ λ = [degϕ][deg λ] = [deg(ϕ ◦ λ)],

and now the result follows via the uniqueness of the dual isogeny.

(3) ϕ̂(Q) = ϕ∗(Q − O). So we need to show that ϕ∗ + λ∗ = (ϕ + λ)∗ on Pic(E2).
(See Silverman III, §6.2.)

(4) This is true for m = 0 and m = 1. Now observe that, using induction,

̂[m± 1] = [̂m]± [̂1] = [m]± [1] = [m± 1].

(5) First note that
[deg[m]] = [̂m] ◦ [m] = [m] ◦ [m] = [m2].

So deg[m] = m2. Now suppose degϕ = m. Then we have

[m2] = [deg[m]]

= [deg(ϕ ◦ ϕ̂)]

= [(degϕ)(deg ϕ̂)]

= [m ◦ deg ϕ̂].

Hence deg ϕ̂ = m.
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(6) Suppose that m = degϕ. Then

ϕ̂ ◦ ϕ = [m] = [̂m] = ̂̂ϕ ◦ ϕ = ϕ̂ ◦ ˆ̂ϕ.

Hence ϕ = ˆ̂ϕ.

So now we can describe Em = E[m], the kernel of [m] : E(K̄)→ E(K̄).

Case I. char(K) = 0 or char(K) - m. Then

#Em = # ker([m]) = degs[m] = deg[m] = m2,

so Em ' Z/mZ×Z/mZ. (Look at the number of possible cyclic factors in the prime
power case.)

Case II. Consider Epe , p = char(K). Then #Epe = degs[p
e] = degs(ϕ̂ ◦ϕ)e, where ϕ

is the Frobenius map x 7→ xp. Then

ϕ̂ ◦ ϕ = [p] = (degs(ϕ̂ ◦ ϕ))e = degs(ϕ̂)e.

Then

degs(ϕ̂) =

{
1 if ϕ̂ is inseparable,
p if ϕ̂ is separable.

So if ϕ̂ is inseparable, then #Epe = 1. If ϕ̂ is separable, then #Epe = pe for all e, so
Epe ' Z/peZ.

We can now describe all of the possibilities for the automorphism algebra of an elliptic
curve.

Properties of End(E).

• Ring with identity.

• No zero divisors.
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• End(E) has an involution ϕ 7→ ϕ̂ which is additive and antimultiplicative,
−ϕ ◦ ϕ̂ ∈ Z, and ϕ ◦ ϕ̂ ≥ 0, with equality iff ϕ = 0.

Theorem 3.17 (Hurwitz) Any ring R with the above properties is one of the follow-
ing:

1. Z.

2. An order in an imaginary quadratic field with ˆ being complex conjugation.

3. An order in a definite quaternion algebra over Q with ˆ being the canonical invo-
lution. [A definite quaternion algebra over Q is an algebra Q+Qα+Qβ+Qαβ,
where α2, β2 ∈ Q, α2, β2 < 0, and αβ = −βα.]

Proof Sketch. We have Z ⊆ R. If Z ( R, choose α ∈ R such that α2 ∈ Z,
α2 < 0 (use reduced norms and traces to do this; N(α) = αα̂, Tr(α) = α+ α̂). Then
Z[α] ⊆ R; if Z[α] is of finite index in R, then we are done. If not, then find β ∈ R
with β2 ∈ Z, β2 < 0, and αβ = −βα. Then Z[α, β, αβ] ⊆ R. If rankR > 4, then
there exists a Cayley algebra contained in R, which is a contradiction since Cayley
algebras are nonassociative [cf. J. Baez, “The Octonions,” AMS Bulletin 39 (2002),
145–205].

If char(K) = 0, then we have (1) or (2). If char(K) = p > 0, then we have (2) or (3).

Proposition 3.18 Let E be an elliptic curve, and suppose that D =
∑
nP (P ) ∈

Div(E). Then D is principal iff
∑
nP = 0 and

∑
[nP ]P = O.

Proof. Recall (Proposition 3.5) that we have a map σ : Pic0
K(E)

∼→ E(K), [D] ∼
Div(P ) − (O) 7→ P . Every principal divisor has degree zero. Suppose that D ∈
Div0(E). D ∼ 0 iff σ(D) = O iff

∑
[nP ]((P )− (O)) =) iff

∑
[nP ]P = O.
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3.6 The Weil Pairing
This is a pairing [·, ·]m : Em × Em → µm, char(K) - m. It is bilinear, alternating,
nondegenerate, and Galois equivariant.

Construction. Suppose that S, T ∈ Em. Observe that the divisor m(T )−m(O) is
principal. Suppose m(T )−m(O) = (f), say. Suppose that T ′ is such that mT ′ = T .
Then

[m]∗(T )−m∗(O) =
∑
R∈Em

(T ′ +R)− (R),

and this is again a principal divisor equal to (g), say. Observe that

(f ◦ [m]) = [m]∗(m(T )−m(O)) = m(g) = (gm).

Therefore f ◦ [m] and gm are the same up to a constant. Choose the constant implicit
in the definition of f to ensure that f ◦ [m] = gm. Then

g(X + S)m = f ◦ [m](X + S) = f(mX +mS) = f(mX) = g(X)m.

[So m(g ◦ τS) = (f ◦ τmS ◦ [m]) = (f ◦ [m]) = m[g].] Hence we have that g(X+S)
g(X)

∈
µm ⊆ K̄, and we define

[S, T ]m =
g(X + S)

g(X)
.

This is the Weil pairing.

Bilinear in S.

[S1 + S2, T ] =
g(X + S1 + S2)

g(X)
=
g(X + S1 + S2)

g(X + S1)
· g(X + S1)

g(X)
= [S2, T ][S1, T ].

Bilinear in T . Choose functions fi and gi with

(f1) = m(T1)−m(O), (g1) = [m]∗(T1)− [m]∗(O),

(f2) = m(T2)−m(O), (g2) = [m]∗(T2)− [m]∗(O),

(f3) = m(T1 + T2)−m(O), (g3) = [m]∗(T1 + T2)− [m]∗(O).
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There exists a function h such that (h) = (T1 + T2)− (T1)− (T2) + (O). We have

[S, T1 + T2] =
g3(X + S)

g3(X)
.

From the construction of h, we have that(
g3

g1g2

)
= [m]∗(h),

and so we have g3
g1g2

= c(h ◦ [m]); we may assume that c = 1.

g3(X + S)

g3(X)
=
g1(X + S)

g1(X)
· g2(X + S)

g2(X)
· h(m(X + S))

h(mX)
,

i.e. [S, T1 + T2] = [S, T1] · [S,T2].

Alternating. It suffices to show that [T, T ] = 1. Now(
m−1∏
i=0

f ◦ τiT

)
=

m−1∑
i=0

m(((i+ 1)T )− (iT )) = 0,

and so the function
∏m−1

i=0 f ◦ τiT is constant. Also, if mT ′ = T , then
∏m−1

i=0 g ◦ τiT ′ is
also constant, since(

m−1∏
i=0

g ◦ τiT ′
)m

=
m−1∏
i=0

gm ◦ τiT ′ =
m−1∏
i=0

f ◦ [m] ◦ τiT ′ =

(
m−1∏
i=0

f ◦ τiT

)
◦ [m],

which is constant. Hence we have(
m−1∏
i=0

g ◦ τiT ′
)

(X) =

(
m−1∏
i=0

g ◦ τiT ′
)

(X + T ′),

so g(X) = g(X + T ), so [T, T ] = 1.

Nondegeneracy. Suppose that [S, T ] = 1 for all S ∈ Em. Then g(X) = g(X + S)
for all S ∈ Em. Recall (see Proposition 3.9(2)) that there is an isomorphism Em

∼→
Aut(K̄(E)/[m]∗K̄(E)), S 7→ τ ∗S. It follows that we have g ∈ [m]∗K̄(E), i.e. g = h◦[m]
for some h ∈ K̄(E). Then

hm ◦ [m] = (h ◦ [m])m = gm = f ◦ [m],
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so f = hm. Thus m(h) = (f) = m(T )−m(O). Thus (h) = (T )− (O), so T = O.

Galois equivariance. Suppose σ ∈ Gal(K̄/K). If f and g are the functions corre-
sponding to T , then fσ and gσ are the functions corresponding to T σ. So

[Sσ, T σ] =
gσ(Xσ + Sσ)

gσ(Xσ)
=

(
g(X + S)

g(X)

)σ
= [S, T ]σ.

Compatibility. IF S ∈ Emm′ and T ∈ Em, then [S, T ]mm′ = [m′S, T ]m. For we have
(fm

′
) = mm′(T )−mm′(O). So

(g ◦m′)mm
′
= (f ◦ [mm′])m

′
.

Thus
[S, T ]mm′ =

g ◦ [m′](X + S)

g ◦ [m′](X)
=
g(m′X +m′S)

g(m′X)
= [m′S, T ]m.

Proposition 3.19 There exist S, T ∈ Em such that [S, T ]m is a primitive mth root
of unity. Hence if Em ⊆ E(K), then µm ⊆ K×.

Proof. The set {[S, T ]m | S, T ∈ Em} is a subgroup µd of µm. So for all S, T ∈ Em,
we have [S, T ]dm = 1, so [dS, T ]m = 1, so ds = O (since [·, ·]m is nondegenerate), so
d = m (since S is arbitrary). The final assertion follows from the Galois equivariance
of the Weil pairing.

Proposition 3.20 Suppose that φ : E1 → E2 is an isogeny and that S ∈ E1[m] and
T ∈ E2[m]. Then [S, φ̂(T )]m = [φ(S), T ]m.

Proof. Choose f, g ∈ K̄(E2) such that (f) = m(T ) − m(O) and f ◦ [m] = gm (as
described in the construction of the Weil pairing). Then

[φ(S), T ]m =
g(X + φ(S))

g(X)
.
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Now observe that we may choose h ∈ K̄(E1) such that

φ∗((T ))− φ∗((O)) = (φ̂(T ))− (O) + (h).

(φ̂(T ) is the sum of the points of the divisor on the left side — see Theorem 3.16.)
Then we have

div

(
f ◦ φ
hm

)
= φ∗(f)−m(h) = m(φ̂(T ))−m(O)

and (
g ◦ φ
h ◦ [m]

)m
=
f ◦ [m] ◦ φ
(h ◦ [m])m

=

(
f ◦ φ
hm

)
= [m].

So

[S, φ̂(T )]m =

(
g◦φ
h◦[m]

)
(X + S)(

g◦φ
h◦[m]

)
(X)

=
g(φ(X) + φ(S))

g(φ(X))
· h([m]X)

h([m]X + [m]S)

= [φ(S), T ]m.

Consequence. Fix a prime ` 6= char(K). Then the following diagram commutes:

E`n+1 × E`n+1

[·,·]`n+1 //

[`]×[`]

��

µ`n+1

x7→x`

��
E`n × E`n

[·,·]`n // µ`n

Via compatibilities, we obtain a pairing

lim←−E`n × lim←−E`n // lim←−µ`n

T`(E)× T`(E) // Z`(1)
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3.7 The Tate Module
Let E/K be an elliptic curve and m ≥ 2, with (m, char(K)) = 1. Recall that
Em

∼→ Z/mZ× Z/mZ. Since Gal(K̄/K) acts on Em, we obtain a representation

Gal(K̄/K)→ Aut(Em) ' GL2(Z/mZ).

In order to study these representations, it is (extremely!) helpful to introduce the
following definition:

Definition 3.21 The `-adic Tate module of E is T`(E) : lim←−E`n , where the inverse
limit is with respect to the maps [`] : E`n+1 → E`n . Then T`(E) is a Z`-module, and
we have

T`(E) '

{
Z` × Z` if ` 6= char(K),
0 or Z` if ` = char(K).

T`(E) carries a natural Gal(K̄/K) action.

Definition 3.22 The `-adic representation of Gal(K̄/K) associated to E is the nat-
ural map

ρ` : Gal(E/K)→ Aut(T`(E)) ' GL2(Z`).

Exercise. Define Z`(1) := lim←−µ`n . Then we have a representation

χ` : Gal(Q̄/Q)→ Aut(Z`(1)) ' Z×
` = GL1(Z`).

Show that χ` is surjective.

Theorem 3.23 (Serre)

(a) Im(ρ`) is of finite index in GL2(Z`) for all `.

(b) Im(ρ`) = GL2(Z`) for almost all `.

(See e.g. Serre’s Abelian `-adic Representations and Elliptic Curves.)
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3.8 Isogenies
Suppose φ : E1 → E2 is an isogeny. Then φ induces homomorphisms φ : E1[`

n] →
E2[`

n] for all n ≥ 1, which in turn induce φ` : T`(E1) → T`(E2). So we obtain a
homomorphism

Hom(E1, E2)→ Hom(T`(E1), T`(E2))

given by φ 7→ φ`.

Theorem 3.24 Notation as above. The natural map

Hom(E1, E2)⊗ Z` → Hom(T`(E1), T`(E2))

given by φ 7→ φ` is injective.

Definition 3.25 Suppose that M is any abelian group. A function d : M → R is a
quadratic form if

(a) d(m) = d(−m) for all m ∈M .

(b) The pairing M ×M → R given by (m1,m2) 7→ d(m1 +m2)− d(m1)− d(m2) is
bilinear.

We say that a quadratic form is positive definite if

(c) d(m) ≥ 0 for all m ∈M , with equality iff m = 0.

Lemma 3.26 Suppose that E1 and E2 are elliptic curves. Then the degree map
deg : Hom(E1, E2)→ Z is a positive definite quadratic form.

Proof. The only nontrivial point is to show that the pairing 〈φ, ψ〉 = deg(φ + ψ)−
deg(φ)− deg(ψ) is bilinear. Now

[〈φ, ψ〉] = [deg(φ+ ψ)]− [deg(φ)]− [deg(ψ)]

= ̂(φ+ ψ) ◦ (φ+ ψ)− φ̂ ◦ φ− ψ̂ ◦ ψ
= φ̂ ◦ ψ + ψ̂ ◦ φ,
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and this last expression is linear in φ and ψ.

Lemma 3.27 Let M ⊆ Hom(E1, E2) be any finitely generated subgroup. Define

Msat := {φ ∈ Hom(E1, E2) | [m] ◦ φ ∈M for some integer m ≥ 1}.

Then Msat is also finitely generated.

Proof. Extend the degree mapping deg : M → Z to

deg : M ⊗ R→ R, (∗)

where we viewM⊗R as a finite dimensional real vector space equipped with the topol-
ogy inherited from R. Then (∗) is continuous, and so U := {φ ∈M ⊗ R | deg φ < 1}
is an open neighborhood of the origin. Recall that Hom(E1, E2) is a torsionfree Z-
module (Theorem 3.8), and so there is a natural inclusion Msat ↪→ M ⊗ R. Plainly
Msat ∩ U = 0 (since every nonzero isogeny has degree at least 1). So Msat is a dis-
crete subgroup of the finite dimensional vector space M ⊗ R, and so Msat is finitely
generated.

Proof of Theorem 3.24 Suppose φ ∈ Hom(E1, E2) ⊗ Z` with φ` = 0. Let M ⊆
Hom(E1, E2) be any finitely generated subgroup such that φ ∈ M ⊗ Z`. Then Msat

is finitely generated and torsionfree (Lemma 3.27 and Theorem 3.8), and so is free.
Choose a basis φ1, . . . , φt ∈ Hom(E1, E2) of Msat, and suppose that φ = α1φ1 + · · ·+
αtφt, with αi ∈ Z`. For each 1 ≤ i ≤ t, choose ai ∈ Z such that ai ≡ αi (mod `n),
and consider the isogeny

ψ := [a1] ◦ φ1 + · · ·+ [at] ◦ φt ∈ Hom(E1, E2).

Then φ` = 0 implies that ψ kills E1[`
n], so ψ factors through [`n] (Corollary 3.10),

i.e. there exists λ ∈ Hom(E1, E2) such that ψ = [`n] ◦ λ. Now λ ∈Msat, and so there
exists bi ∈ Z such that

λ = [b1] ◦ φ1 + · · ·+ [bt] ◦ φt.

Since the φi’s are a Z-basis of Msat, we have ai = `nbi for 1 ≤ i ≤ t, so αi ≡ 0
(mod `n) for 1 ≤ i ≤ t. Since n was arbitrary, it follows that αi = 0 for 1 ≤ i ≤ t,
and so φ = 0.
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Theorem 3.28 (Tate, Faltings). The natural map

HomK(E1, E2)⊗ Z` → HomK(T`(E1), T`(E2))

is an isomorphism if K is a finite field (Tate), or if K is a number field (Faltings).

3.9 The j-invariant
Suppose that char(K) 6= 2 or 3, and let E/K be an elliptic curve. Then the Weierstraß
model of E can be put in the form E : y2 = x3 + ax+ b (see Silverman III, §1). Then

j(E) :=
4a3

4a3 + 27b2
∈ K.

Theorem 3.29 If E1 ' E2, then j(E1) = j(E2). If j(E1) = j(E2), then E1 'K̄ E2.

Proof. Suppose that E1 ' E2. Then x2 = u2x, y2 = u3x, u ∈ K or K̄ (cf Corollary
3.4). Then a2 = u−4a1 and b2 = u−6b1, so j(E1) = j(E2). Suppose that j(E1) =
j(E2). Then we have

(4a1)
3(4a3

2 + 27b22) = 4a3
2(4a

3
1 + 27b21),

so a3
1b

2
2 = a3

2b
2
1. If a1, b1, a2, and b2 are all nonzero, then(

a1

a2

)3

=

(
b1
b2

)2

= u12,

say, i.e. a1

a2
= u4 and b1

b2
= u6, and so construct an isomorphism using this u.

Exercise. Do the other cases.
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Chapter 4

Elliptic Curves over Finite Fields

Let K = Fq, and let E/K be an elliptic curve.

Problem. Estimate the number of points in E(K), i.e. estimate the number of
solutions to the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with (x, y) ∈ K2.

Lemma 4.1 Let M be an abelian group, and let d : M → Z be a positive definite
quadratic form. Then for all φ, ψ ∈M , we have

|d(ψ − φ)− d(φ)− d(ψ)| ≤ 2
√
d(φ)d(ψ).

Proof. Set L(ψ, φ) := d(ψ − φ) − d(φ) − d(ψ). Then L is bilinear (since d is a
quadratic form). As d is positive definite, we have, for all m,n ∈ Z,

0 ≤ d(mψ − nφ) = m2d(ψ) +mnL(ψ, φ) + n2d(φ).

Take m = −L(ψ, φ) and n = 2d(ψ); then

0 ≤ d(ψ)[4d(ψ)d(φ)− L(ψ, φ)2],

and this is enough.
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Theorem 4.2 (Hasse) Suppose that K = Fq and E/K is an elliptic curve. Then

|#E(K)− q − 1| ≤ 2
√
q.

Proof. Choose a Weierstraß equation for E/K. Let φ : E → E, (x, y) 7→ (xq, yq)
be the qth power Frobenius morphism. Now Gal(K̄/K) is topologically generated by
the qth power map on K̄. Hence if P ∈ E(K̄), then P ∈ E(K) iff φ(P ) = P , so
E(K) = ker(1− φ). Since 1− φ is separable, we have

#E(K) = # ker(1− φ) = deg(1− φ).

Thus Lemma 4.2 yields

| deg(1− φ)− deg(φ)− deg(1)| ≤ 2
√

deg(φ) deg(1),

so
|#E(K)− q − 1| ≤ 2

√
q.

Example. (Estimating character sums). Suppose that K = Fq, with q odd. Let
f(x) = ax3 + bx2 + cx + d ∈ K[x] be a cubic polynomial with distinct roots in K̄.
Let χ : K× → {±1} be the unique nontrivial character of order 2 (so χ(t) = 1 iff
t is a square in K×). Set χ(0) = 0; then χ is defined on K. Use χ to count the
number of K-rational points on the elliptic curve E : y2 = f(x). Each x ∈ K gives 0,
respectively 1, respectively 2 points (x, y) ∈ E(K) if f(x) is a nonsquare, respectively
zero, respectively a square in K. So

#E(K) = 1 +
∑
x∈K

(χ(f(x)) + 1) = 1 + q +
∑
x∈K

χ(f(x)).

Hence we have ∣∣∣∣∣∑
x∈K

χ(f(x))

∣∣∣∣∣ ≤ 2
√
q.

This is the tip of a vast iceberg, cf for example “Sommes exponentielles,” Astérisque
79 by N. Katz.
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Let K = Fq, and set Kn to be the unique extension of K of degree n. (So #Kn = qn.)
Let V/K be a projective variety. V (Kn) := the set of points of V with coordinates
in Kn.

Definition 4.3 The zeta function of V/K is the power series

Z(V/K;T ) = exp

(
∞∑
n=1

(#V (Kn))
T n

n

)
.

(Here exp(F (T )) :=
∑∞

i=0
F (T )i

i!
for F (T ) ∈ Q[[T ]] with no constant term.)

We have
#V (Kn) =

1

(n− 1)!

dn

dT n
log(Z(V/K;T ))

∣∣∣∣
T=0

.

Example. Take V = Pn. Then each point in V (Kn) is given by homogeneous
coordinates [x0 : . . . : xN ] with xi ∈ Kn, not all zero. Two sets of coordinates give the
same point only if they differ by multiplication by an element of K×

n . So we have

#V (Kn) =
qn(N+1) − 1

qn − 1
=

N∑
i=0

qni.

Hence

logZ(V/K;T ) =
∞∑
n=1

(
N∑
i=0

qni

)
T n

n
=

N∑
i=0

− log(1− qiT ).

So
Z(V/K;T ) =

1

(1− T )(1− qT ) · · · (1− qNT )
∈ Q(T ).

Remark. A similar argument shows that in general, if there are α1, . . . , αr ∈ C such
that #V (Kn) = ±αn1 ± · · · ± αnr for all n ∈ N, then Z(V/K;T ) will be a rational
function.
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Theorem 4.4 (The Weil Conjectures) Let K = Fq, and suppose that V/K is a
smooth projective variety of dimension n.

(a) Rationality: Z(V/K;T ) ∈ Q(T ).

(b) Functional equation: There is an integer ε such that

Z

(
V/K;

1

qnT

)
= ±qnε/2T εZ(V/K;T ).

(c) Riemann Hypothesis: There is a factorization

Z(V/K;T ) =
P1(T ) · · ·P2n−1(T )

P0(T )P2(T ) · · ·P2n(T )
,

with each Pi(T ) ∈ Z[T ]. Also P0(T ) = 1 − T , P2n(T ) = 1 − qnT , and for each
1 ≤ i ≤ 2n− 1, we have Pi(T ) =

∏
j(1− αijT ), αij ∈ C with |αij| = qi/2.

4.1 Proof of the Weil Conjectures for Elliptic Curves
E/K

Recall that we have a map End(E) → End(T`(E)) given by ψ 7→ ψ`. ψ` may be
written as a 2× 2 matrix over Z`, so we may compute det(ψ`),Tr(ψ`) ∈ Z`.

Proposition 4.5 Suppose that ψ ∈ End(E). Then det(ψ`) = deg(ψ) and Tr(ψ`) =
1− deg(ψ)− deg(1− ψ). (So det(ψ`),Tr(ψ`) ∈ Z and are independent of `.)

Proof. Choose a Z`-basis v1, v2 of T`(E). Write the matrix of ψ` with respect to this
basis as

ψ` =

(
a b
c d

)
.

There is a nondegenerate, bilinear, alternating Weil pairing e : T`(E) × T`(E) →
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T`(µ) = Z`(1). So we have

e(v1, v2)
deg(ψ) = e([degψ]v1, v2)

= e(ψ̂` ◦ ψ`(v1), v2)

= e(ψ`(v1), ψ`(v2))

= e(av1 + cv2, bv1 + dv2)

= e(v1, v2)
ad−bc

= e(v1, v2)
detψ` .

Hence degψ = detψ`, since e is nondegenerate. For any 2× 2 matrix A, say, we have
Tr(A) = 1 + det(A)− det(1− A).

Let φ : E → E be the qth power Frobenius morphism. Then #E(K) = deg(1 − φ),
#E(Kn) = deg(1−φn). The characteristic polynomial of φ` has coefficients in Z and
so may be factored over C:

det(T − φ`) = T 2 − Tr(φ`)T − det(φ`) = (T − α)(T − β),

say. Next observe that for each m/n ∈ Q, we have

det
(m
n
− φ`

)
=

det(m− nφ`)
n2

=
deg(m− nφ)

n2
≥ 0,

and so det(T − φ`) has complex conjugate roots. Hence |α| = |β|, and so, since
αβ = detφ` = deg φ = q, we have |α| = |β| = √q.

Now the characteristic polynomial of φn` is given by det(T −φn` ) = (T −αn)(T − βn),
so

#E(Kn) = deg(1− φn) = det(1− φn` ) = 1− αn − βn + qn.

Theorem 4.6 Let K = Fq, and let E/K be an elliptic curve. Then there is an a ∈ Z
such that

Z(E/K;T ) =
1− aT + qT 2

(1− T )(1− qT )
.

Also
Z

(
E/K;

1

qT

)
= Z(E/K;T ),
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and 1− aT + qT 2 = (1− αT )(1− βT ), with |α| = |β| = √q.

Proof. We have

logZ(E/K;T ) =
∞∑
n=1

(#E(Kn))
T n

n

=
∞∑
n=1

(1− αn − βn + qn)

n
T n

= − log(1− T ) + log(1− αT ) + log(1− βT )− log(1− qT ),

so
Z(E/K;T ) =

(1− αT )(1− βT )

(1− T )(1− qT )
.

Thus
a = α+ β = Tr(φ`) = 1 + q − deg(1− φ) ∈ Z`.

[This is ε = 0 in the functional equation

Z

(
V/K;

1

qnT

)
= ±qnε/2T εZ(V/K;T ),

where dimV = n.]

Remark. Suppose we make a change of variable T = q−s. Then

ζE/K(s) := Z(E/K; q−s) =
1− αq−s + q1−2s

(1− q−s)(1− q1−s)
.

The functional equation becomes ζE/K(1 − s) = ζE/K(s), and ζE/K(s) = 0 implies
that |qs| = √q, so <(s) = 1/2.

Question. Suppose E/Q is an elliptic curve y2 = ax3 + bx + c, with a, b ∈ Z.
We can look at E/Fp. This is an elliptic curve for all but finitely many p. Let
φ : E/Fp → E/Fp be the Frobenius morphism. For any ` 6= p, we can look at
φ` : T`(E/Fp) → T`(E/Fp). φ` has complex conjugate eigenvalues αp and βp, say
(independent of `). We’ve just shown that |αp| = |βp| = p1/2. So

αp = p1/2eiθp , βp = p1/2e−iθp .

How do the angles θp vary with p?
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4.2 Equidistribution
Suppose E/Q is an elliptic curve without complex multiplication, and let p be a prime
such that Ẽ/Fp (the reduction of E modulo p) is nonsingular. Theorem 4.2 (Hasse)
implies that |#Ẽ(Fp)− p− 1| ≤ 2

√
p, i.e.

p+ 1− 2
√
p ≤ Ẽ(Fp) ≤ p+ 1 + 2

√
p.

So we may write Ẽ(Fp) = p+ 1− ap, with |ap| ≤ 2
√
p. p+ 1 is the “main term,” and

ap is the “error term.” We may write ap = 2
√
p cos θ, with θ ∈ [0, π].

Question. How does θp vary with p?

Suppose we are given a sequence {xn}n≥1 in a compact space X with probability
measure µ.

Definition 4.7 Say that {xn} is equidistributed with respect to µ if for all contin-
uous functions f : X → C, we have∫

X

f dµ = lim
N→∞

N∑
i=1

f(xn).

[It suffices to check this on a set of test functions {fi} whose C-span is uniformly
dense.]

Suppose that G is a compact group equipped with a Haar measure (so G has total
mass 1). Let X = {conjugacy classes in G}, and write µ for the Haar measure on X
induced from the Haar measure on G. There is a bijection between continuous func-
tions on X and continuous central (class) functions on G given by

∫
X
f dµ =

∫
G
f dg.

We can take our uniformly dense set of functions {fi} to be functions of the form
g 7→ Tr Λ(g), for Λ an irreducible representation of G (Peter-Weyl Theorem). We
have ∫

X

1 dµ = 1,

∫
X

Tr(Λ) dµ = 0
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if Λ 6= 1 is irreducible (via orthogonality relations for characters).

Weyl Criterion for Equidistribution. For all irreducible nontrivial representa-
tions Λ,

N∑
i=1

Tr(Λ(xi)) = o(N).

4.3 The L-Function Method
Suppose that G is a compact group, and let N ≥ 1 be an integer. Suppose that for
each prime p with p - N , we are given a conjugacy class θp of G. When is {θp}p-N
equidistributed in X? See Serre’s book Abelian `-adic Representations and Elliptic
Curves (1968).

For each nontrivial irreducible representation Λ of G, form the L-function

L(s,Λ) :=
∏
p-N

1

det(1− Λ(θp)p−s)
.

This converges for <(s) > 1.

Theorem 4.8 (Serre’s book). For Λ as above, suppose

(1) L(s,Λ) has an analytic representation on an open set contained in <(s) ≥ 1,
and

(2) L(s,Λ) is nowhere zero on <(s) = 1.

Then {θp}p-N is equidistributed in X.

Theorem 4.9 (Deligne, Weil II). In the Serre setup, (1) implies (2) with at most one
exception. This exception, if it exists, is a 1-dimensional character Λ : G→ {±1}.
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Corollary 4.10 There are no exceptions if either G is connected or if for all Λ : G→
{±1}, the map p 7→ Λ(θp) is a Dirichlet character (i.e. a character of (Z/NZ)×).

Examples.

(a) Dirichlet (1837). There exist infinitely many primes in arithmetic progressions
unless there clearly aren’t. Dirichlet introduces Dirichlet L-functions L(s, χ)
and prove that L(1, χ) 6= 0 if χ 6= 1.

(b) Chebotarev (1915) Let K/Q be Galois, with G = Gal(K/Q). Consider the
map sending p to the conjugacy class of Frobp in G. Then {Frobp}p-disc(K/Q) is
equidistributed in X.

(c) Early 1960’s: Back to our original elliptic curve example. Salo does computer
experiments. In 1963 Tate writes down the Sato-Tate Conjecture.

Sato-Tate Conjecture. Let E/Q be an elliptic curve without complex multiplica-
tion. For almost all p, we know that E(Fp) = p + 1 − ap, where ap = 2

√
p cos θp for

some θp ∈ [0, π]. Then {θp} is equidistributed in [0, π] with respect to the (Sato-Tate)
measure 2

π
sin2 θ dθ.

Each conjugacy class in G := SU(2,C) contains a unique element of the form(
eiθ 0
0 e−iθ

)
.

The Haar measure on the set X of conjugacy classes is 2
π

sin2 θ dθ (cf e.g. Bröcker
and tom Dieck, Representations of Compact Lie Groups).

(d) (2006) Clozel, Harris, Shepherd-Barron, Taylor: The Sato-Tate Conjecture
holds for E/Q with j(E) 6∈ Z. They prove this via the L-function method.
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4.4 The Hasse Invariant and the Endomorphism Ring
Theorem 4.11 Suppose that K is a perfect field with characteristic p > 0, and let
E/K be an elliptic curve. Let φr : E → E(pr) and φ̂r : E(pr) → E be the Frobenius
map and its dual.

(a) The following conditions are equivalent:

(i) Epr = O for one (and therefore all) r ≥ 1.

(ii) φ̂r is purely inseparable for one (and therefore all) r ≥ 1.

(iii) The map [p] : E → E is purely inseparable, and j(E) ∈ Fp2 .
(iv) End(E) is an order in a quaternion algebra.

In this case, we say that E is supersingular or has Hasse invariant 0.

(b) If (a) does not hold, then Epr ' Z/prZ for all r ≥ 1. In this case, if j(E) ∈ F̄p,
then End(E) is an order in an imaginary quadratic field. If j(E) 6∈ F̄p, then
End(E) ' Z. In this case, we say that E is ordinary or has Hasse invariant 1.

Proof.

(a) We first show (i) iff (ii). Recall that φr is purely inseparable (Theorem 2.5). So

degs(φ̂r) = degs[p
r] = (degs[p])

r = (degs φ̂)r.

Thus
#Epr = degs(φ̂r) = (degs φ̂)r.

Thus #Epr = 1 iff degs φ̂r = 1, as required.

We now show (ii) implies (iii). Since φ is purely inseparable, and (ii) implies
that φ̂ is purely inseparable, we see that [p] = φ̂ ◦ φ is also purely inseparable.
Now recall (Theorem 2.5) that every map τ : C1 → C2 between smooth curves
over a field of characteristic p factors as

C1
τ //

φ(q)   B
BB

BB
BB

B C2

C
(q)
1

λ

>>||||||||
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where q := degs(τ), φ(q) is the qth power Frobenius map, and λ is separable.
Applying this to φ̂ : E(p) → E, we see that we have a diagram

E(p)
φ̂ //

Φ ##F
FFFFFFF E

E(p2)

λ

=={{{{{{{{

where Φ is the pth power Frobenius map on E(p), and λ is of degree 1. Hence λ
is an isomorphism, and so j(E) = j(E(p2)) = j(E)p

2 , so j(E) ∈ Fp2 .

We now show that (iii) implies (iv). The proof proceeds via contradiction.
We first observe that if End(E) is not an order in a quaternion algebra and
K := End(E)⊗Z Q, then K = Q or K is an imaginary quadratic field. Suppose
that E ′ is isogenous to E, with ψ : E → E ′. We have ψ ◦ [p] = [p] ◦ψ, and since
[p] is purely inseparable on E, [p] is also purely inseparable on E ′. (Compare
inseparable degrees of both sides.) This in turn implies that j(E ′) ∈ Fp2 , and so
there are only finitely many possibilities for E ′. As there are only finitely many
End(E ′)’s, we may choose a prime ` ∈ Z such that ` 6= p and ` remains prime
in End(E ′) for every E ′ isogenous to E (exercise). Now E[`i] ' Z/`iZ×Z/`iZ,
so there exists a sequence of subgroups Φ1 ⊂ Φ2 ⊂ · · · ⊂ E with Φi ' Z/`iZ for
each i ≥ 1. Set Ei := E/Φi, so Ei is isogenous to E. Then there exist integer
m and n such that Em+n ' Em with τ : Em+n

∼→ Em, say. Then we have

Em
λ //

proj ##F
FFFFFFF Em

Em+n

∼
;;xxxxxxxx

τ

;;xxxxxxxx

where ker(λ) ' Z/`nZ (i.e. ker(λ) ' Φm+n/Φm). Since ` is prime in End(Em),
it follows (by looking at degrees) that λ = u ◦ [`n/2], u ∈ Aut(Em), and n is
even. This is a contradiction, because ker([`n/2]) is never cyclic for any n > 0.
Hence (iii) implies (iv), as claimed.

We now show that (iv) implies (ii). Our strategy is to show that if (ii) is
false (so φ̂r is separable for all r ≥ 1), then End(E) is commutative (which
contradicts (iv)). Suppose therefore that φ̂r is separable for all r ≥ 1. Then
Epr ' Z/prZ for all r ≥ 1 (since (i) iff (ii)) and Tp(E) ' Zp. We claim that the
natural map End(E)→ End(Tp(E)) is injective. For suppose that ψ ∈ End(E)
lies in the kernel of this map. Then ψ(Epr) = 0 for all r ≥ 1, so # ker(ψ) ≥ pr
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for all r ≥ 1, so ψ = 0. Since End(Tp(E)) ' End(Zp) ' Zp, we deduce that
End(E) is commutative, as desired.

(b) If (a) does not hold, then (i) above implies that Epr ' Z/prZ for all r ≥ 1.
Suppose that j(E) ∈ F̄p, and that (a) does not hold. Then j(E) ∈ K, K is
a finite field, and there exists an elliptic curve E ′/K with E ′ ' E (cf Silver-
man III, Proposition 1.4). Suppose #K = pr; then φr ∈ End(E ′) ' End(E).
If Φr ∈ Z ⊂ End(E ′) ' End(E), then φr = [±pr/2], and r is even (compare
degrees!). Then #E ′

pr/2 = degs φr = 1, which is a contradiction. Hence φr 6∈ Z,
and so End(E ′) is strictly larger than Z. Therefore End(E ′) is an order in an
imaginary quadratic field (since by assumption, it is not an order in a quater-
nion algebra).

4.5 Interlude: Legendre Normal Form
Definition 4.12 We say that a Weierstraß equation is in Legendre form if it can
be written as y2 = x(x− 1)(x− λ).

Theorem 4.13 Let K be any field with char(K) 6= 2.

(a) Every elliptic curve E/K is isomorphic over K̄ to an elliptic curve Eλ : y2 =
x(x− 1)(x− λ) for some λ ∈ K̄, with λ 6= 0, 1.

(b) j(Eλ) = 28(λ2−λ+1)
λ2(λ−1)2

.

(c) The map K̄ \ {0, 1} → K̄ given by λ 7→ j(Eλ) is surjective. It is

six-to-one if j 6= 0 or 1728,
two-to-one if j = 0,

three-to-one if j = 1728.

Proof.
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(a) If char(K) 6= 2, then E has a Weierstraß equation of the form y2 = 4x3 + b2x
2 +

2b4x+b6. The transformation x 7→ x, y 7→ 2y yields y2 = (x−e1)(x−e2)(x−e3),
e1, e2, e3 ∈ K̄. The ei’s are distinct since ∆ = 16(e1−e2)2(e1−e3)2(e2−e3)2 6= 0.
Now apply the substitution x 7→ (e1 − e2)x′ + e1, y 7→ (e2 − e1)3/2y′ to obtain
an equation in Legendre form with λ = e3−e1

e2−e1 ∈ K̄, λ 6= 0 or 1.

(b) This follows from a calculation.

(c) Suppose j(Eλ) = j(Eµ), say. Then Eλ 'K̄ Eµ, and so the Weierstraß equations
of these curves in Legendre form are related by x 7→ u2x′ + r, y 7→ u3 + y′.
Equating yields

x(x− 1)(x− µ) =
(
x+

r

u2

)(
x+

r − 1

u2

)(
x+

r − λ
u2

)
.

There are six ways of assigning the linear terms. These yield the possibilities

µ ∈
{
λ,

1

λ
, 1− λ, 1

1− λ
,

λ

λ− 1
,
λ− 1

λ

}
.

Thus λ 7→ j(Eλ) is six-to-one unless two or more of the values for µ coincide.
The only possibilities are λ = −1, 2, 1

2
, in which case j(Eλ) = 1728, and the set

has three elements, or λ2 − λ+ 1 = 0, in which case j(Eλ) = 0, and the set has
two elements.

Question. How can we tell when an elliptic curve is supersingular?

Theorem 4.14 Suppose K is a finite field with char(K) > 2.

(a) Let E/K be an elliptic curve with Weierstraß equation E : y2 = f(x), where
f(x) ∈ K[x] is a cubic with distinct roots. Then E is supersingular iff the
coefficient of xp−1 in f(x)(p−1)/2 is zero.

(b) Let m = 1
2
(p− 1), and set

Hp(t) =
m∑
i=0

(
m

i

)2

ti.

Suppose λ ∈ K̄ with λ 6= 0 or 1. Then the elliptic curve Eλ : y2 = x(x−1)(x−λ)
is supersingular iff Hp(λ) = 0.
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(c) Hp(t) has distinct roots in K̄. There are (up to isomorphism) exactly
⌊
p
12

⌋
+ εp

supersingular elliptic curves in characteristic p, where

εp =


0 if p ≡ 1 (mod 12),

1 if p ≡ 5 or 7 (mod 12),
2 if p ≡ 11 (mod 12).

Proof.

(a) Set q = #K. If χ : K× → {±1} is the unique nontrivial character of order 2,
then, setting χ(0) = 0, we have

#E(K) = 1 + q +
∑
x∈K

χ(f(x)) = 1 +
∑
x∈K

f(x)(q−1)/2

in K. (Since K× is cyclic of order q − 1, χ(z) = z(q−1)/2 for all z ∈ K×.) Since
K× is cyclic of order q − 1, we have

∑
x∈K

xi =

{
−1 if (q − 1) | i,
0 if (q − 1) - i.

Now f(x) has degree 3, so the only nonzero term in
∑

x∈K f(x)(q−1)/2 comes from
xq−1. So if Aq is the coefficient of xq−1 in f(x)(q−1)/2, then #E(K) = 1−Aq in
K. Now if φ : E → E is the qth power Frobenius endomorphism, we have

#E(K) = deg(1− φ) = (1− φ)(1− φ̂) = 1− (φ+ φ̂) + q = 1− a+ q,

say, whence a = Aq in K. So Aq = 0 in K if and only if a ≡ 0 (mod p) (since
a is an integer). Now φ̂ = [a] − φ, so a ≡ 0 (mod p) iff φ̂ is separable iff E is
supersingular. Hence Aq = 0 in K iff E is supersingular. We claim that Ap = 0
in K iff Aq = 0 in K. For we have

f(x)(pr+1−1)/2 = f(x)(pr−1)/2
(
f(x)(p−1)/2

)pr

.

Equating coefficients (using the fact that f(x) is a cubic!) yields Apr+1 = Apr ·
Ap

r

p , and this implies the claim via induction on r.
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(b) We apply (a). Recall that m = 1
2
(p − 1). We have to calculate the coefficient

of xp−1 in [x(x − 1)(x − λ)](p−1)/2, which is the coefficient of x(p−1)/2 in (x −
1)(p−1)/2(x− λ)(p−1)/2, which is

m∑
i=0

(
m

i

)
(−λ)i

(
m

m− i

)
(−1)m−i = (−1)m

m∑
i=0

(
m

i

)2

λi = (−1)mHp(λ),

which implies the result.

(c) In order to show that Hp(t) has simple roots, we introduce the differential
operator

D = 4t(1− t) d
2

dt2
+ 4(1− 2t)

d

dt
− 1.

A routine calculation yields

DHp(t) = p
m∑
i=0

(p− 2− 4i)

(
m

i

)2

ti,

so
DHp(t) = 0 in K[t]. (†)

Suppose Hp(t) = (t − α)nf(t), say, with 2 ≤ n ≤ m and f(α) 6= 0 in K.
Substituting this expression into (†) and simplifying yields 4α(α − 1) = 0, so
α = 0 or 1. We have Hp(0) = 1 and

Hp(1) =
m∑
i=0

(
m

i

)2

=

(
2m

m

)
=

(2m)!

(m!)2
6≡ 0 (mod p).

Hence the roots of Hp(t) are simple, as claimed. Each root λ of Hp(t) yields an
elliptic curve Eλ : y2 = x(x− 1)(x− λ).

If p = 3, then Hp(t) = 1 + t, so there is exactly one supersingular curve in
this case, with j-invariant j(E−1) = 1728. Suppose therefore that p ≥ 5. Recall
that the map λ 7→ j(Eλ) is six-to-one if j 6= 0 or 1728, two-to-one if j = 0, and
three-to-one if j = 1728. Furthermore, if Hp(λ) = 0 and j(Eλ) = j(Eλ′), then
Hp(λ

′) = 0 also, since Eλ ' Eλ′ and the roots of Hp(t) consist precisely of all
values of λ for which Eλ is supersingular. For each number β, say, define

εp(β) =

{
1 if β is a supersingular j-invariant over Fp,
0 if β is an ordinary j-invariant over Fp.
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Then the number of supersingular elliptic curves in characteristic p ≥ 5 is

1

6

(
p− 1

2
− 2εp(0)− 3εp(1728)

)
+εp(0)+εp(1728) =

p− 1

2
+

2

3
εp(0)+

1

2
εp(1728).

We have to determine for which primes p ≥ 5 the curve E : y2 = x3 + 1
(with j-invariant 0) is supersingular. Apply part (a): the coefficient of xp−1 in
(x3 + 1)(p−1)/2 is{

0 if p ≡ 2 (mod 3) — supersingular,(
(p−1)/2
(p−1)/3

)
6≡ 0 (mod p) if p ≡ 1 (mod 3) — ordinary.

We now have to determine for which primes p ≥ 5 the curve E : y2 = x3 + x
(with j-invariant 1728) is supersingular. The coefficient of xp−1 in (x3+x)(p−1)/2

is equal to the coefficient of x(p−1)/2 in (x2 + 1)(p−1)/2, which is{
0 if p ≡ 2 (mod 3) — supersingular,(
(p−1)/2
(p−1)/4

)
6≡ 0 (mod p) if p ≡ 1 (mod 4) — ordinary.
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Chapter 5

Elliptic Curves over C

Basic Facts. We have E(C)
∼→ C/Λ, a Riemann surface of genus 1. Over C, every

lattice gives rise to an elliptic curve. (In higher dimensions, it’s possible to have lat-
tices that give rise to abelian varieties that are not algebraic.)

Definition 5.1 Fix a lattice Λ ⊂ C.

(a) Elliptic functions (relative to Λ) are meromorphic functions on C/Λ, or mero-
morphic functions on C, periodic with respect to Λ. The set of elliptic functions
is denoted C(Λ). This is a field.

(b) A fundamental parallelogram for Λ is a set P = {a + t1ω1 + t2ω2 : 0 ≤
t1, t2 ≤ 1}, where a ∈ C, and ω1 and ω2 are a basis of Λ.

Theorem 5.2 Suppose that f ∈ C(Λ).

(1) If f has no zeros or poles, then f is constant.

(2)
∑

w∈C/Λ ordw(f) = 0.

(3)
∑

w∈C/Λ resw(f) = 0.

(4)
∑

w∈C/Λw ordw(f) ∈ Λ.

Proof.
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(1) If f has no poles, then it is bounded on the fundamental parallelogram. Hence
f is a bounded entire function, and so is constant. If f has no zeros, then 1/f
has no poles, and so we just argue as above.

The proofs of the remaining assertions follow via applying the residue theorem to
suitable functions on P .

(2) ∑
w∈C/Λ

ordw(f) =
1

2πi

∫
∂P

f ′(z)

f(z)
dz = 0.

(3) ∑
w∈C/Λ

resw(f) =
1

2πi

∫
∂P

f(z) dz = 0.

(4) ∑
w∈C/Λ

w ordw(f) =
1

2πi

∫
∂P

z
f ′(z)

f(z)
dz

=
1

2πi

(∫ ω1

0

+

∫ ω1+ω2

ω1

+

∫ ω2

ω1+ω2

+

∫ 0

ω2

)
z
f ′(z)

f(z)
dz

=
−ω2

2πi

∫ ω1

0

f ′(z)

f(z)
dz +

ω1

2πi

∫ ω2

0

f ′(z)

f(z)
dz.

Now use the fact that e.g. 1
2πi

∫ ω1

0
f ′(z)
f(z)

dz is the winding number around 0 of the
path [0, 1]→ C given by t 7→ f(tω1), which is an integer, since f(0) = f(ω1).

Definition 5.3 The order of an elliptic function f is the number of poles (counted
with multiplicity) inside any fundamental parallelogram.

Corollary 5.4 Any nonconstant elliptic function f has order at least 2.

Proof. Suppose that f has a single simple pole. Then Theorem 5.2(3) implies that
the residue of f at this pole is zero, so f(z) is holomorphic. This implies that f(z) is
constant.
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Definition 5.5 Let Λ be a lattice. The Weierstraß ℘-function relative to Λ is defined
by the series

℘(z; Λ) =
1

z2
+
∑
ω∈Λ
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.

This is periodic with respect to Λ. It has double poles at the lattice points and no
other poles. ℘′(z; Λ) = −2

∑
ω∈Λ

1
(z−ω)3

.

The Eisenstein series of weight 2k is

G2k(Ω) =
∑
ω∈Λ
ω 6=0

ω−2k.

Lemma 5.6
℘(z) =

1

z2
+
∑
n even
n>0

(n+ 1)Gn+2z
n.

Proof. We have

1

(z − ω)2
− 1

ω2
=

1

ω2

(
1(

1− z
ω

)2 − 1

)
=

1

ω2

(∑
n>1

( z
ω

)n−1
)
.

Thus
℘(z) =

1

z2
+
∑
n>1

(∑ 1

ωn+1

)
nzn−1 =

1

z2
+
∑
n even
n>0

(n+ 1)Gn+1z
n.
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Next, we observe that

℘(z) = z−2 + 3G4z
2 + · · · ,

℘(z)2 = z−4 + constant + · · · .
℘(z)3 = z−6 + ∗ · z + · · · .
℘′(z) = −2z3 + ∗ · z + · · · .
℘′(z)2 = 4z−6 + ∗ · z−2 + · · · .

Look at
f(z) = ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6.

This function f(z) is holomorphic in a neighborhood of z = 0, and f(0) = 0. Since
f is elliptic and holomorphic away from Λ, it follows that f is a holomorphic elliptic
function and is therefore identically zero. So

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6.

In the future we will write g2 for 60G4 and g3 for 140G6.

Proposition 5.7 The equation 4x3 − g2x− g3 has only simple zeros.

Proof. Observe that ℘′(z) is an odd function. So if ω = 1
2
Λ, ω 6∈ Λ, then

℘′(ω) = −℘′(−ω) = −℘′(ω), and so ℘′(ω) = 0. It therefore follows that 4x3−g2x−g3

has zeros at x = ℘
(
ω1

2

)
, x = ℘

(
ω2

2

)
, and x = ℘

(
ω1+ω2

2

)
. We now show that these

three values of x are distinct. The function f(z) := ℘(z)− ℘
(
ω1

2

)
has a double pole

at z = 0, and a double zero at z = ω1

2
. Hence (f) = 2

(
ω1

2

)
− 2(0), so f

(
ω2

2

)
6= 0

and f
(
ω1+ω2

2

)
6= 0, i.e. ℘

(
ω1

2

)
6= ℘

(
ω2

2

)
and ℘

(
ω1

2

)
6= ℘

(
ω1+ω2

2

)
. A similar argument

shows that ℘
(
ω2

2

)
6= ℘

(
ω1+ω2

2

)
.

Consequence. The equation E : y2 = 4x3 − g2x − g3 defines an elliptic curve over
C.

Theorem 5.8 C(Λ) = C(℘(z), ℘′(z)).

Proof. Suppose that f(z) ∈ C(Λ). Then f(z) = 1
2
(f(z)+ f(−z))+ 1

2
(f(z)− f(−z)),

where the first term is even and the second term is odd. Observe that if g(z) ∈ C(Λ)
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is odd, then ℘′(z)g(z) is even, and so we are reduced to considering even functions.

We claim that if 2ω ∈ Λ, then ordω(f) is even. For f(z) = f(−z), so f (i)(z) =
(−1)if (i)(z) for all i ≥ 0. Now if 2ω ∈ Λ, then f (i)(ω) = f (i)(−ω) for all i, and so we
deduce that f (i)(ω) = 0 for all odd i. Hence ordω(f) is even, as claimed.

We therefore see that if f is an even function, then (f) =
∑

w nw((w)+(−w)), nw ∈ Z
for all w. Now

div

(∏
w

(℘(z)− ℘(w))nw

)
=
∑
w

nw(−2(0) + (w) + (−w)) = (g(z)),

say. Hence f(z) and g(z) have exactly the same zeros and poles except possibly at
z = 0. But now Theorem 5.2(2) implies that ord0 f(z) = ord0 g(z) also. Therefore
(f) = (g), and now the result follows.

The map ϕ : C/Λ→ E(C) ⊆ P2(C) given by z 7→ [℘(z), ℘′(z), 1] is an analytic map.

ϕ is surjective. For any x ∈ C, the function ℘(z) − x has zeros (since ℘(z) has a
double pole). Thus there exists a z with ℘(z) = x. Then (℘(z), ℘′(z)) = (x,±y), and
(℘(−z), ℘′(−z)) = (x,∓y).

ϕ is injective. Suppose ϕ(z1) = ϕ(z2). If 2z1 6∈ Λ, then ℘(z)− ℘(z1) has order 2 and
has zeros at z1, −z1, and z2. Hence z1 ≡ ±z2 (mod Λ). Therefore ℘′(z1) = ℘′(z2) =
℘′(±z1) = ±℘′(z1), so z1 ≡ z2 (mod Λ) (since ℘′(z1) 6= 0 from the proof of Theorem
5.8). If 2z1 ∈ Λ, then ℘(z) − ℘(z1) has a double zero at z1, and vanishes at z2. So
z2 ≡ z1 (mod Λ).
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Chapter 6

Elliptic Curves over Local Fields

6.1 Formal Groups
The formal group of an elliptic curve (motivating example). Consider the
Weierstraß equation y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6. Make the change of
variables z = −x

y
, w = − 1

y
. (So y = − 1

w
, x = z

w
.) This yields

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3 =: f(z, w).

Now substitute this equation for w into itself repeatedly to obtain a formal power
series. We obtain w = z3(1 + A1z + A2z

2 + · · · ), where An ∈ Z[a1, . . . , a6]. By the
above procedure (assuming everything makes sense!), we have constructed w(z) sat-
isfying w(z) = f(z, w(z)). We may do this more precisely by using Hensel’s Lemma:

Lemma 6.1 (Hensel’s Lemma) Suppose that R is a ring which is complete with
respect to an ideal I. Let F (w) ∈ R[w] be a polynomial, and suppose that a ∈ R
satisfies F (a) ∈ In, F ′(a) ∈ R× (for some n ≥ 1). Then for any α ∈ R satisfying
α ≡ F ′(a) (mod I), the sequence w0 = a, wm+1 = wm − F (wm)

α
converges to an ele-

ment b ∈ R satisfying F (b) = 0 and b ≡ a (mod In). (b is uniquely determined if R
is an integral domain.)

Proof. See Silverman IV, Lemma 1.2 or Fröhlich-Taylor, page 84.

Now define a sequence of polynomials fm(z, w) by f1(z, w) = f(z, w) and fm+1(z, w) =
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fm(z, f(z, w)). Set

w(z) = lim
m→∞

fm(z, 0) ∈ Z[a1, . . . , a6][[z]]

(assuming that this makes sense — see below).

Proposition 6.2

(a) The above procedure yields a power series

w(z) = z3(1 + A1z + A2z
2 + · · · ) ∈ Z[a1, . . . , a6][[z]].

(b) w(z) is the unique power series satisfying w(z) = f(z, w(z)).

(c) Suppose that Z[a1, . . . , a6] is made into a graded ring by assigning weights
wt(ai) = i. Then An is a homogeneous polynomial of weight n.

Proof.

(a) and (b) Apply Hensel’s Lemma with R = Z[a1, . . . , a6][[z]], I = (z), F (w) = f(z, w)−w,
a = 0, and α = 1.

(c) Use induction, starting with the fact that f(z, w) is homogeneous of weight −3.

Now we may write down Laurent series for x and y:

x(z) =
z

w(z)
=

1

z2
− a1

z
− a3z + (a4 + a1a3)z

2 + · · · ,

y(z) =
−1

w(z)
=
−1

z3
+
a1

z2
+
a2

z
+ a3 + (a4 + a1a3)z + · · · .

The coefficients of x(z) and y(z) lie in Z[a1, . . . , a6]. For the invariant differential, we
have

ω(z)

dz
=

dx(z)/dz

2y + a1x+ a3

=
−2z−3 + · · ·
−2z−3 + · · ·

∈ Z
[
1

2
, a1, . . . , a6

]
[[z]],

and

ω(z)

dz
=

dy(z)/dz

3x2 + 2a2x+ a4 − a1y
=

3z−4 + · · ·
3z−4 + · · ·

∈ Z
[
1

3
, a1, . . . , a6

]
[[z]].
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Hence ω(z)
dz
∈ Z[a1, . . . , a6][[z]] also.

Now suppose that a1, . . . , a6 ∈ Zp. Then, for all z ∈ pZp, we have (x(z), y(z)) ∈
E(Qp). So we have a map pZp ↪→ E(Qp). (This is not a group homomorphism.) We
would now like to define an addition:

(z1, w(z1)) + (z2, w(z2)) = (z3(z1, z2), w(z3)).

(For brevity, we write w1 = w(z1) and w2 = w(z2). We will allow z3 ∈ R[[z1, z2]] for
some ring R.) (Think of all of these as points on the curve E(R[[z]]). This is what
the addition actually means.) We apply the chord-tangent method: The slope of the
line joining (z1, w(z1)) and (z2, w(z2)) is

λ =
w2 − w1

z2 − z1

=
∑
n≥3

An

(
zn2 − zn1
z2 − z1

)
.

Substituting into the Weierstraß equation gives a cubic in z whose third root is

z′3 = z′3(z1, z2) ∈ Z[a1, . . . , a6][[z1, z2]].

The inverse of a point (z, w) will have z-coordinate given by (recall z = −x/y)

i(z) =
x(z)

y(z) + a1x(z) + a3

∈ Z[a1, . . . , a6][[z]].

Finally, we obtain

z3 = F (z1, z2) = i(z′3(z1, z2)) ∈ Z[a1, . . . , a6][[z1, z2]].

From the properties of addition on E, it follows that F (z1, z2) satisfies the following:

• F (z1, z2) = F (z2, z1) (commutativity)

• F (z1, F (z2, z3)) = F (F (z1, z2), z3) (associativity)

• F (z, i(z)) = 0 (inverse).

So F (z1, z2) is a “group law without any elements.”

Let us now pass to the general case:

Definition 6.3 A one-dimensional formal group over a ring R is a power series
F ∈ R[[x, y]] satisfying

63



1. F (X, Y ) = X + Y+ higher order terms.

2. F (X, Y ) = F (Y,X).

3. F (F (X, Y ), Z) = F (X,F (Y, Z)).

4. F (X, 0) = F (0, X) = X.

5. There exists i(X) ∈ R[[X]] such that F (X, i(X)) = 0.

Examples.

• Ga : F (X, Y ) = X + Y .

• Gm : F (X, Y ) = (1 +X)(1 + Y )− 1 = X + Y +XY .

• Ê: the formal group of an elliptic curve E.

Definition 6.4 A homomorphism between two formal groups F and G is a power
series ϕ ∈ R[[T ]] (with no constant term) satisfying

G(ϕ(X), ϕ(Y )) = ϕ(F (X, Y )).

We say that F and G are isomorphic over R if there are homomorphisms f : F → G
and g : G→ F defined over R satisfying f(g(T )) = g(f(T )) = T .

Example. Define [m](X) : F → F by [m](X) = F (X, [m − 1](X)) for m ≥ 0 and
[−m](X) = i([m](X)).

Proposition 6.5 Let F be a formal group over R, and suppose that m ∈ Z. Then

(a) [m](T ) = mT+ higher order terms.

(b) If m ∈ R×, then [m] : F → F is an isomorphism.

Proof.
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(a) This follows by induction.

(b) This follows from the following fact: If f(X) ∈ R[[X]] with f(0) = 0 and f ′(0) ∈
R×, then there exists g(X) ∈ R[[X]] such that g(f(X)) = X. To show existence,
we inductively construct a sequence of polynomials gn(X) ∈ R[X] such that
f(gn(X)) = X (mod Xn+1) and gn+1(X) ≡ gn(X) (mod Xn+1). Then g(X) :=
limn→∞ gn(X) exists and satisfies f(g(X)) = X. Set a = f ′(0) ∈ R×, and take
g1(X) = a−1X. Suppose we’ve constructed gn−1(X). We seek λ ∈ R such that
gn(X) = gn−1(X) + λXn satisfies the desired property:

f(gn(X)) = f(gn−1(X) + λXn)

≡ f(gn−1(X)) + aλXn (mod Xn+1)

≡ X + αXn + aλXn (mod Xn+1)

for some α ∈ R, via our inductive hypothesis. So we can take λ = −αa−1 ∈ R
(remember that a ∈ R×!). It now follows that g(X) exists. Now f(g(X)) = X,
so g(f(g(X))) = g(X) in R[[g(X)]], so g(f(X)) = X. To show uniqueness, note
that if f(h(X)) = X, then g(X) = g(f(h(X))) = (g ◦ f)(h(X)) = h(X). So
g(X) is unique.

Suppose now that R is a complete local ring with maximal ideal m and residue field
k. Let F be a formal group over R. We may endow m with a new group structure
via F as follows:

Definition 6.6 The group law associated to F is the set m endowed with the fol-
lowing operations: addition x ⊕F y = F (x, y) for x, y ∈ m, and inverses 	Fx = i(x)
for x ∈ m. The power series F (x, y) and i(x) converge for x, y ∈ m (since R is com-
plete). Hence m endowed with this structure is a group. (We often write F (m) for
this group.)

Examples.

(a) Ĝa(m) is m with the usual addition law. There is an exact sequence

0→ Ĝa(m)→ R→ k → 0.

(b) Ĝm(m) is the group of 1-units of R with the usual multiplication law. There is
an exact sequence

1→ Ĝm(m)→ R× → k× → 1.
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(c) Let K be the field of fractions of R, and let Ê be the formal group of an elliptic
curve E/K. Then there is a natural map m→ E(K) given by z 7→ (x(z), y(z)).
This yields a homomorphism Ê(m) → E(k). There is often (but not always!)
an exact sequence

0→ Ê(m)→ E(K)→ Ẽ(k)→ 0.

Proposition 6.7

(a) Suppose n ≥ 1. Then the natural map

F (mn)

F (mn+1)
→ mn

mn+1

induced by the identity on sets is an isomorphism.

(b) Suppose that char(k) = p. Then if p - m, F (m) has no nontrivial m-torsion.

Proof.

(a) For x, y ∈ mn, we have x⊕F y = F (x, y) = x+ y+ higher order terms ≡ x+ y
(mod m2n).

(b) Suppose that x ∈ F (m) satisfies [m](x) = 0. Since m is prime to p, we have
m 6∈ m, and so [m] : F (m)→ F (m) is an isomorphism. Hence x = 0.

Definition 6.8 A differential on a formal group F is an expression of the form

P (T ) dT = ω(T ) ∈ R[[T ]] dT.

An invariant differential is one satisfying ω ◦ F (T, S) = ω(T ), i.e.

P (F (T, S))FX(T, S) dT = P (T ) dT.

(FX(T, S) is the partial derivative with respect to the first variable.) We say that
ω(T ) is normalized if P (0) = 1.
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Example. Suppose that E/R is an elliptic curve, and let ω = dx
2y+a1x+a3

. Then
ω(z) = 1 + · · · ∈ R[[z]]. This translates into an invariant differential for the formal
group Ê.

Lemma 6.9

(1) FX(0, T )−1 dT is an invariant differential on F .

(2) If P (T ) dT is an invariant differential on F , then P (T ) = P (0)FX(0, T )−1 dT .

Proof.

(1) From the associative law, we have F (F (U, T ), S) = F (U, F (T, S)). Taking ∂
∂U

gives
FX(F (U, T ), S)FX(U, T ) = FX(U, F (T, S)).

Now setting U = 0 yields

FX(T, S)FX(0, T ) = FX(0, F (T, S)).

We set P (T )−1 = FX(0, T ) and P (F (T, S))−1 = FX(0, F (T, S)). This just says
that F (0, T )−1 dT is an invariant differential.

(2) We have P (F (T, S))FX(T, S) = P (T ). Setting T = 0 gives P (S)FX(0, S) =
P (0), i.e. P (S) = P (0)FX(0, S)−1.

Corollary 6.10 Suppose that F and G are formal groups over R, with normalized
invariant differentials ωF (T ) and ωG(T ), respectively. Let f : F → G be a homomor-
phism. Then ωG ◦ f = f ′(0)ωF .

Proof. We first observe that ωG ◦ f is an invariant differential on F :

ωG ◦ f(F (T, S)) = ωG(F (f(T ), f(S))) = ωG ◦ f(T ).

Lemma 6.9 implies that ωG ◦ f = αωF for some α ∈ R, so α = f ′(0) (compare initial
terms).
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Corollary 6.11 Suppose that F is a formal group over R, and let p be a ratio-
nal prime. Then there exist f(T ), g(T ) ∈ R[[T ]] with f(0) = g(0) = 0 such that
[p](T ) = pf(T ) + g(T p).

Proof. Let ω(T ) be the normalized invariant differential on F . Proposition 6.7(a)
implies that [p]′(0) = p. Thus Corollary 6.10 implies that

pω(T ) = ω ◦ [p](T ) = (1 + · · · )[p]′(T ),

so [p]′(T ) ∈ pR[[T ]] since 1 + · · · ∈ R[[T ]]×. Hence, for any term aT n of the power
series [p](T ), we have either a ∈ pR or p | n.

Definition 6.12 Suppose that F is a formal group over R, and let K be the field of
fractions of R, with characteristic 0. Let

λF (T ) :=

∫
FX(0, T )−1 dT

(formal integral), i.e. if ωF (T ) is the normalized invariant differential on F , then
λF (T ) :=

∫
ωF (T ).

Proposition 6.13 λF (F (S, T )) = λF (S) + λF (T ).

Proof. Let ωF be the normalized invariant differential on F . Then ωF (F (T, S)) =
ωF (T ), so integrating with respect to T , we have λF (F (S, T )) = λF (T )+f(S), where
f(S) ∈ K[[S]]. Setting T = 0 gives λF (S) = λF (0) + f(S) = f(S).

λF is called the formal logarithm of F . Note that Proposition 6.13 implies that
λF : F → Ĝa is a homomorphism of formal groups over K, since λF ∈ K[[T ]].

Definition 6.14 Observe that λF (T ) = T + · · · , so λF is a formal group isomorphism
over K. We write expF for the inverse of λF , so expF is the unique power series sat-
isfying expF ◦λF = λF ◦ expF = 1 (cf the proof of Proposition 6.7(b)).
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Theorem 6.15 λF (T ) converges on m and expF (T ) converges on mn, where n > v(p)
p−1

.
(Here v(p) denotes the largest integer such that p ∈ mv(p).) Also expF (T ), λF (T ) :

mn → mn if n > v(p)
p−1

.

Corollary 6.16 F (mn)
∼→ mn if n > v(p)

p−1
.

Let K be a finite extension of Qp, and v a valuation on K. Let R be the ring of
integers of K, m the maximal ideal of R, π a uniformizer in m, and k = R/m the
residue field.

Let E/K be an elliptic curve with Weierstraß model y2+a1xy+a3y = x3+a2x
2+a4x+

a6. Since char(K) 6= 2 or 3, we may put this equation in the form E : y2 = x3+Ax+B,
with distriminant ∆ = −16(4A3 + 27B2). E is nonsingular iff ∆ 6= 0.

Definition 6.17 A minimal model of E/R is a model of E (with all coefficients in
R) such that v(∆) is minimal.

Proposition 6.18 A minimal model of E/R is unique up to isomorphism over R.

Proof. Suppose E1 and E2 are minimal with E1
∼/K→ E2. Then the isomorphism

must be of the form x 7→ u2x + r, y 7→ u3x + sx + t, u ∈ K× (Corollary 3.4). Now
under this transformation, ∆ 7→ u±12∆. So if E1/R and E2/R are both minimal,
then v(∆1) = v(∆2), and u ∈ R×. This implies that r, s, t ∈ R (see transformation

formulae in Silverman III 1.2). Hence E1
∼/R→ E2.

6.2 Reduction
Suppose that E/K is an elliptic curve with a given minimal Weierstraß equation.
Then we may reduce the coefficients of this equation (mod π); this gives us a (pos-
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sibly singular) curve over the residue field k via

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6.

Suppose P ∈ E(K). Then we may write P = [x0, y0, z0] with x0, y0, z0 ∈ R (and
at least one of x0, y0, z0 ∈ R×). So we have a reduction map E(K) → Ẽ(k) given
by P = [x0, y0, z0] 7→ P̃ = [x̃0, ỹ0, z̃0]. Let Ẽns(k) be the set of nonsingular points
of Ẽ(k). This is a group (direct check; see e.g. Silverman III, Proposition 2.5). We
define E0(K) = {P ∈ E(K) : P̃ ∈ Ẽns(k)} and E1(K) = {P ∈ E(K) : P̃ = Õ} (the
kernel of reduction).

Proposition 6.19 There is an exact sequence of abelian groups

0→ E1(K)→ E0(K)→ Ẽns(k)→ 0.

Proof. First observe that reduction yields a group homomorphism, since if P,Q ∈
Ẽns(k), the line ` through P and Q intersects the curve again in R ∈ Ẽns(k).
Now we show surjectivity on the right. Suppose (x̄, ȳ) ∈ Ẽns(k), and let f(x, y) =
y2 + a1xy + a3y − x3 − a2x

2 − a4x − a6 = 0 be a minimal Weierstraß equation for
E. Then ∂f

∂x
(x̄, ȳ) and ∂f

∂y
(x̄, ȳ) are not both zero, since the point (x̄, ȳ) is nonsin-

gular. Suppose that ∂f
∂x

(x̄, ȳ) 6= 0, and take any y0 ∈ R, reducing to ȳ (mod m).
Then f(x, y0) ∈ R[x]. Suppose that x0 ∈ R reduces to x̄. Then f(x0, y0) ∈ m

and ∂f
∂x

(x0, y0) 6∈ m. Hence there exists x′ ∈ R with x′ ≡ x0 (mod m) such that
f(x′, y0) = 0 and (x′, y0) 7→ (x̄, ȳ). (Hensel’s Lemma — Lemma 6.1.) So we have
surjectivity on the right.

Consequence. Suppose that v(∆) = 0. Then Ẽ is nonsingular, and Ẽns = Ẽ. So
we have an exact sequence

0 // E1(K) // E0(K) // Ẽ(k) // 0.

E(K)
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We now analyze E1(K).

Proposition 6.20 The map Ê(m)→ E1(K) given by z 7→
(

z
w(z)

, −1
w(z)

)
is an isomor-

phism.

Proof. We know that w(z) converges for z ∈ m, and
(

z
w(z)

, −1
w(z)

)
satisfies the Weier-

straß equation of E. So
(

z
w(z)

, −1
w(z)

)
∈ E(K). Recall

w(z) = z3(1 + A1z + A2z
2 + · · · ),

An ∈ Z[a1, . . . , a6]. So v
(

−1
w(z)

)
= −3v(z), so

(
z

w(z)
, −1
w(z)

)
∈ E1(K). w(z) = 0 only if

z = 0, so the map is injective. Now suppose x, y ∈ E1(K). Then y2 + · · · = x3 + · · · ,
so 3v(x) = 2v(y) = −6r (some r ≥ 1). So x

y
∈ m, and so we have an injective

homomorphism (Exercise!) E1(K) → Ê(m) given by (x, y) 7→ −x
y
. Hence we have

injections
Ê(m)→ E1(K)→ Ê(m),

and so these must be isomorphisms.

Now we can look at points of finite order.

Proposition 6.21 Suppose that E/K is an elliptic curve, and m ≥ 1 is an integer
coprime to char(k).

(a) E1(K) has no nontrivial points of order m.

(b) Suppose that the reduced curve Ẽ(k) is nonsingular, and let E(K)[m] denote
the set of points of order m in E(K). Then the reduction map E(K)[m]→ Ẽ(k)
is injective.

Proof. Consider the exact sequence

0→ E1(K)→ E0(K)→ Ẽns(k)→ 0.
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(a) E1(K) ' Ê(m), and so E1(K) contains no nontrivial points of order m (since
this is true of Ê(m)) (Proposition 6.7(b)).

(b) If Ẽ/k is nonsingular, then E0(K) = E(K) and Ẽns(k) = Ẽ(k). Hence the
m-torsion in E(K) injects into Ẽ(k).

Corollary 6.22 If E has good reduction and p - m, then (x, y) ∈ E(K)[m] implies
x, y ∈ R.

Proof. E1(K) = {(x, y) : x, y 6∈ R}.

Example. Finally all torsion on E : y2 = x3 − x over Q. Observe that ∆ =
−64 = −26. Consider E (mod 3). Ẽ is nonsingular. So we have (prime-to-3 torsion)
↪→ Ẽ(F3).

x x3 − x y
0 0 0
1 0 0
−1 0 0

and the point at infinity. So #Ẽ(F3) = 4, and this bounds the prime-to-3 torsion.
Now consider E (mod 5).

x x3 − x y
0 0 0
1 1 0
2 2 ±1
−2 −2 ±2
−1 −1 0

and the point at infinity. So #Ẽ(F5) = 8, and this implies that there is no 3-torsion.
Hence #E(Q)tors ≤ 4, and in fact

E(Q)tors = {(0, 0), (1, 0), (−1, 0),∞}

— all killed by 2.
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Theorem 6.23 Suppose that K is a local field, and that E/K is an elliptic curve with
good reduction. Let p = char(k), and suppose m ∈ Z with p - m. Then K(Em)/K is
unramified.

Proof. Suppose σ is in the inertia subgroup of Gal(K(Em)/K). If P ∈ Em, then

˜σ(P )− P = σ̃(P )− P̃ = P̃ − P̃ = Õ.

Hence σ(P ) = P for all P ∈ Em, and so σ = 1, as required.

Remark.

(a) Theorem 6.23 is false without the good reduction hypothesis.

(b) Suppose that F is a number field. Then F (Em)/F is ramified only at primes
dividing m and primes of bad reduction.

Theorem 6.24 Suppose that K is a local field, and that E/K has good reduction.
Let P ∈ E(K̄) with mP ∈ E(K) and p - m. Then K(P )/K is unramified.

Proof. If σ ∈ Gal(K̄/K), then m(σP − P ) = σ(mP ) −mP = O. Now, as before,
if σ is in the inertia subgroup of Gal(K(P )/K), then ˜σP − P = Õ, so σP − P = O,
and the result follows as previously.

The previous two theorems may be formulated in terms of Galois action: Let Knr

be the maximal unramified extension of K, and let Iv be the inertia subgroup of
Gal(K̄/K). Then there is an exact sequence

1 // Gal(K̄/Knr) // Gal(K̄/K) // Gal(Knr/K)

'
��

// 1.

Iv Gal(k̄/k)
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Definition 6.25 Let Σ be a set on which Gal(K̄/K) acts. Then Σ is said to be
unramified at v if the action of Iv upon Σ is trivial.

Theorem 6.26 Let E/K be an elliptic curve with Ẽ/k nonsingular.

(i) Suppose m ≥ 1, with p - m (p = char(k)). Then Em is unramified at v.

(ii) If ` 6= p, then T`(E) is unramified at v.

Proof. See above.

Definition 6.27 Suppose that E/K is an elliptic curve and that Ẽ/k is the reduced
curve for a minimal Weierstraß equation.

(i) E has good (or stable) reduction over K if Ẽ/k is nonsingular.

(ii) E has multiplicative (or semistable) reduction over K if Ẽ has a node.

(iii) E has additive (or unstable) reduction if Ẽ has a cusp.

In case (ii) above, E is said to have split (respectively non-split) multiplicative reduc-
tion if the slopes of the tangent lines at the node are in k (respectively not in k).

The reasons for (some of) the above terminology are summarized by the following
proposition.

Proposition 6.28 Let E/K be an elliptic curve with minimal Weierstraß equation
y2 + a1xy+ a3y = x3 + a2x

2 + a4x+ a6, and of discriminant ∆. Set cr = (a2
1 +4a2)

2−
24(2a4 + a1a3).

(a) E has good reduction iff v(∆) = 0.

(b) E has multiplicative reduction iff v(∆) > 0 and v(c4) = 0. In this case, Ẽns(k̄) '
k̄×.

(c) E has additive reduction iff v(∆) > 0 and v(c4) > 0. In this case, Ẽns(k̄) ' k̄+.
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Proof. Tedious case-by-case analysis. See Silverman III 1.4 and III 2.5.

Definition 6.29 An elliptic curve E/K is said to have potential good reduction
over K if there is a finite extension K ′/K such that E/K ′ has good reduction.

Exercise. If E/K has complex multiplication, then E/K has potential good reduc-
tion.

Theorem 6.30 (Semistable reduction theorem) Let E/K be an elliptic curve.

(a) Suppose that K ′/K is an unramified extension. Then the reduction type of E
over K is the same as that of E over K ′.

(b) Suppose that K ′/K is a finite extension, and that E has either good or multi-
plicative reduction over K. Then it has the same type of reduction over K ′.

(c) There exists a finite extension K ′/K such that E/K ′ has either good or split
multiplicative reduction.

Proof. We suppose that we have v′/v, K ′/K, R′/R, ∆′/∆, and c′4/c4.

(a) For simplicity, assume char(k) ≥ 5, and let y2 = x3 + Ax + B be a minimal
Weierstraß equation of E over K. Let x 7→ (u′)2x′, y 7→ (u′)3y′ be a change of
coordinates giving a minimal equation for E over K ′. Then K ′/K is unramified
implies that there exists u ∈ K such that u/u′ ∈ (R′)×. So we see that the
substitution x 7→ u2x′, y 7→ u3y′ also gives a minimal equation for E/K ′ because
v′(u−12∆) = v′((u′)−12∆). Since this new equation also has coefficients in R, we
have v(u) = 0, as the original equation was minimal over K. Thus the original
equation is also minimal over K ′. Now v(∆) = v′(∆) and v(c4) = v′(c′4), so by
Proposition 6.28, E has the same reduction type over K and K ′.

(b) Let ∆ and c4 be the quantities associated to a minimal Weierstraß equation for
E/K, and let x 7→ u2x′ + r, y 7→ u3y′ + su2x′ + t be a change of coordinates
giving a minimal equation over K ′ with associated quantities ∆′ and c′4. Then
0 ≤ v′(∆′) = v′(u−12∆) and 0 ≤ v′(c′4) = v′(u−4c4). Since v′(∆′) is minimal,
u ∈ R′, and so

0 ≤ v′(u) ≤ min

{
1

12
v′(∆),

1

4
v′(c4)

}
.
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Now good reduction implies v(∆) = 0, and multiplicative reduction implies
v(c4) = 0, so v′(u) = 0 in the case of either good or multiplicative reduction.
So we have v′(∆′) = v′(∆) and v′(c′4) = v′(c4), and now the result follows from
Proposition 6.28.

(c) Assume for simplicity that char(k) 6= 2, and that (possibly over a finite extension
of K) E has a Weierstraß equation in Legendre normal form

E : y2 = x(x− 1)(x− λ), λ 6= 0, q.

Then c4 = 16(λ2 − λ + 1) and ∆ = 16λ2(λ − 1)2. There are three cases to
consider:

(i) λ ∈ R, λ 6≡ 0 or 1 (mod m). Then ∆ ∈ R×, so E has good reduction over
K.

(ii) λ ∈ R, λ ≡ 0 or 1 (mod m). Then ∆ ∈ m and c4 ∈ R×, so E has split
multiplicative reduction.

(iii) λ 6∈ R. Choose r ≥ 1 so that πrλ ∈ R×, and make the substitution
x 7→ π−rx′, y 7→ π−3/2y′ (passing to K(π1/2) if necessary). This yields a
Weierstraß equation (y′)2 = x′(x′−πr)(x′−πrλ) with integral coefficients,
∆′ ∈ m, c′4 ∈ R×, so E has split multiplicative reduction.

Proposition 6.31 Let E/K be an elliptic curve. Then E has potential good reduc-
tion iff j(E) ∈ R.

Proof. Assume that char(k) 6= 2 and that E : y2 = x(x − 1)(x − λ), λ 6= 0 or 1.
Then we have

28(1− (1− λ))3 − jλ2(1− λ)2 = 0.

Thus j(E) ∈ R implies that λ is an integer and λ ≡ 0 or 1 (mod m). So the Legendre
model has integral coefficients and good reduction. Suppose conversely that E has
potential good reduction, and let K ′/K be a finite extension such that E has good
reduction over K ′. Then

j(E) =
(c′4)

3

∆′ ∈ R
′,

so j(E) ∈ R since j(E) ∈ K.
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To study questions involving reduction, we introduce the notion of the Néron minimal
model.

Definition 6.32 Let X be a scheme with a morphism to another scheme, X → S.
We say that X is a group scheme over S if there are

• A section e : S → X (the identity).

• A morphism ρ : X → X over S (the inverse).

• A morphism µ : X ×X → X over S (group multiplication) such that

(a) The composition µ ◦ (id × ρ) : X → X is equal to the projection X → S
followed by e.

(b) The two morphisms µ ◦ (µ × id) and µ ◦ (id × µ) from X ×X ×X → X
are the same.

Now let K be a local field as before, and let E/K be an elliptic curve.

Definition 6.33 A Néron model E/R for E/K is a smooth group scheme over
R whose generic fiber is E/K and which satisfies the following universal property:
Let X/R be a smooth scheme, and let φK : X ×R K → E ×R K be a rational map.
Then φK extends uniquely to a morphism φ : X/R→ E/K. This universal property
characterizes the Néron model.

By analyzing the special fiber of E/R (there are only finitely many possibilities), it is
possible to prove the following result:

Theorem 6.34 Let E/K be an elliptic curve. If E has split multiplicative reduc-
tion over K, then E(K)/E0(K) is a cyclic group of order v(∆). In all other cases,
E(K)/E0(K) has order at most 4.

Corollary 6.35 E0(K) is of finite index in E(K).
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This fact can be used to give further insight into E(K):

Proposition 6.36 Suppose K is a finite extension of Qp. Then E(K) contains a
subgroup of finite index which is isomorphic to the additive group R+.

Proof. We know that E(K)/E0(K) is finite, and that E0(K)/E1(K) ' Ẽns(k),
which is also finite. So it suffices to show that E1(K) has a subgroup of finite index
which is isomorphic to R+. We have E1(K) ' Ê(m). Now Ê(m) has a filtration

Ê(m) ⊃ Ê(m2) ⊃ Ê(m3) ⊃ · · · ,

and
Ê(mi)/Ê(mi+1) ' mi/mi+1

(Proposition 6.7(a)), which is finite. For r > v(p)
p−1

(where v is the valuation on K),
we have (Corollary 6.16) Ê(mr) ' mr (via the formal logarithm), which in turn is
isomorphic to πrR, where π is a local uniformizer of K.

Theorem 6.37 (Criterion of Néron-Ogg-Shafarevich) Let E/K be an elliptic curve.
The following statements are equivalent:

(a) E has good reduction over K.

(b) E[m] is unramified at v for all integers m ≥ 1 coprime to char(k).

(c) The Tate module T`(E) is unramified for some (or all) ` 6= char(k).

(d) E[m] is unramified for infinitely many integers m ≥ 1 coprime to char(k).

Proof. It suffices to show (d) implies (a). Let m be an integer satisfying:

(i) m is coprime to char(k).

(ii) m > #E(Knr)/E0(K
nr).

(iii) E[m] is unramified at v.
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Look at the two exact sequences

0→ E0(K
nr)→ E(Knr)→ E(Knr)

E0(Knr)
→ 0 (∗)

and
0→ E1(K

nr)→ E0(K
nr)→ Ẽns(k̄)→ 0. (∗∗)

Now E[m] ⊂ E(Knr), and so E(Knr) has a subgroup isomorphic to (Z/mZ)2. Since
m > #E(Knr)/E0(K

nr), there exists a prime ` | m such that E0(K
nr) contains a

subgroup isomorphic to (Z/`Z)2. Now (∗∗) implies that Ẽns(k̄) contains a subgroup
isomorphic to (Z/`Z)2, since E1(K

nr) contains no `-torsion. This can only happen
if E has good reduction over Knr, which in turn implies that E has good reduction
over K.

Corollary 6.38 Suppose E1/K and E2(K) are elliptic curves which are isogenous
over K. Then either they both have good reduction or they both do not.

Proof. Let ϕ : E1 → E2 be a nonzero isogeny defined over K. Suppose m ≥ 2 is
coprime to both char(k) and deg(ϕ). Then ϕ : E1[m]→ E2[m] is an isomorphism of
Gal(K̄/K)-modules. Hence both modules are ramified or both are not.

Corollary 6.39 Let E/K be an elliptic curve. Then E has potential good reduction
iff the inertia group Iv acts on T`(E) through a finite quotient for some (or all) primes
` 6= char(k).

Proof. Suppose that E/K has potential good reduction. Then there exists a finite
extension K ′/K such that E has good reduction over K ′; we may assume that K ′/K
is Galois. Theorem 6.37 implies that Iv′ acts trivially on T`(E) for all ` 6= char(k).
Hence the action of Iv on T`(E) factors though the finite quotient Iv/Iv′ , as desired.

Suppose conversely that for some ` 6= char(k), the action of Iv on T`(E) factors
though a finite quotient Iv/H. Then K̄H is a finite extension of K̄Iv = Knr. Hence
there exists a finite extension K ′/K such that K̄H = K ′ ·Knr. Then Iv′ = H, which
acts trivially on T`(E) by hypothesis. Theorem 6.37 now implies that E has good
reduction over K ′.
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Chapter 7

A Cohomological Interlude

7.1 Cohomology of Finite Groups
Suppose that G is a finite group, and M is a G-module.

Definition 7.1 We define H0(G,M) = MG = {m ∈M | σ(m) = m for all σ ∈ G}.

Definition 7.2 A (1)-cocycle or crossed homomorphism is a map f : G → M
such that f(στ) = f(σ) + σf(τ) for all σ, τ ∈ G. So

f(1) = f(1 · 1) = f(1) + f(1),

and so f(1) = 0. For any fixed m ∈ M , the map σ 7→ σ(m) −m is a cocycle. We
say that such a cocycle is a coboundary (or that such a crossed homomorphism
is principal). The sets of cocycles and coboundaries are closed under addition and
subtraction.

Definition 7.3 We define H1(G,m) = {cocycles}
{coboundaries} .

Remark. If G acts trivially on M , then a cocycle is a homomorphism, and every
coboundary is zero. So H ′(G,M) = Hom(G,M) (and H0(G,M) = MG = M).

Theorem 7.4 (Hilbert’s Theorem 90) Suppose L/K is a finite Galois extension with
G = Gal(L/K). Then H1(G,L×) = 0.
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Proof. Suppose f : G → L× is a cocycle. So f(στ) = f(σ)f(τ)σ. We seek γ ∈ L×
such that f(σ) = σ(γ)

γ
for all σ ∈ G. Now since f is not the zero map, it follows via

linear independence of characters that the map L→ L given by

x 7→
∑
τ∈G

f(τ)τ(x)

is not the zero map, i.e. there exists α ∈ L such that

β :=
∑
τ∈G

f(τ)τ(α) 6= 0.

Then

σ(β) =
∑
τ∈G

σ(f(τ))στ(α)

=
∑
τ∈G

f(σ)−1f(στ)στ(α)

= f(σ)−1
∑
τ∈G

f(στ)στ(α)

= f(σ)−1β.

Thus
f(σ) =

β

σ(β)
=
σ(β−1)

β−1
,

as desired.

Corollary 7.5 A point P = (x0 : · · · : xn) ∈ Pn(L) is fixed by G iff it is represented
by an (n+ 1)-tuple in K.

Proof. Suppose that σ(P ) = P for all σ ∈ G. Then we have σ(x0, . . . , xn) =
c(σ)(x0, . . . , xn) for some c(σ) ∈ L×. Check that σ 7→ c(σ) is a cocycle. Then Theorem
7.4 implies that c(σ) = α

σ(α)
for some α ∈ L×. Thus σ(αx0, . . . , αxn) = (αx0, . . . , αxn),

and so αxi ∈ K for i = 0, . . . , n.
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Proposition 7.6 For any exact sequence of G-modules

0→M
g→M

f→ P → 0,

there is a natural exact sequence

0→ H0(G,M)→ H0(G,N)→ H0(G,P )
δ→ H1(G,M)→ H1(G,N)→ H1(G,P ).

Proof. Here is the definition of the connecting homomorphism δ: Suppose p ∈
H0(G,P ) = PG. Then there exists n ∈ N with f(n) = p. For any σ ∈ G,
f(σ(n) − n) = σ(p) − p = 0, and so σ(n) − n ∈ M . Then G → M given by
σ 7→ σ(n)− n is a cocycle. Check that this is well-defined, etc.

Definition 7.7 Suppose H ≤ G. Then the restriction map f 7→ f |H on cocycles
induces a restriction homomorphism Res : H1(G,M) → H1(H,M) on cohomology
groups.

Remark. Suppose that H C G, and that M is a G-module. Then MH is a G/H-
module. A cocycle f : G/H →MH induces a cocycle f̃ : G→M

G

��

f̃ //____ M

G/H
f
//MH

� ?

OO

and so we obtain an inflation homomorphism Inf : H1(G/H,MH) → H1(G,M).
Then the following sequence is exact (exercise):

0→ H1(G/H,MH)
Inf→ H1(G,M)

Res→ H1(H,M).
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7.2 Cohomology of Infinite Galois Groups
SupposeK is a perfect field, and set G = Aut(K̄/K). We define the Krull topology on
G as follows: H ≤ G is open iff Fix(H)/K is a finite extension. We write Gal(K̄/K)
for G endowed with the Krull topology. We have the Galois correspondence

{finite extensions of K} ↔ {open subgroups of G}.

Definition 7.8

• WE say that a G-module M is discrete if the map G×M →M is continuous
relative to the discrete topology on M and the Krull topology on G. This is
equivalent to M =

⋃
HM

H , where H runs over open subgroups of G (i.e. every
element of M is fixed by a subgroup of G fixing a finite extension of K).

• Suppose that M is discrete. Then a cocycle f : G → M is continuous iff f is
constant on the cosets of some open normal subgroup H of G. (Then f arises
via inflation from a cocycle G/H →M .) Every coboundary is continuous.

Definition 7.9 H1(G,M) = {continuous cocycles}
{coboundaries} . So

H1(G,M) = lim−→
H

H1(G/H,MH),

where H runs over open normal subgroups of G.

Example. (Kummer Theory) We have

H1(Gal(K̄/K), K̄×) = lim−→
L

H1(Gal(L/K), L×) = 0

(via Hilbert’s Theorem 90). Now consider the exact sequence

1 // µn(K̄) // K̄× // K̄× // 1.

x � // xn
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This yields the following exact sequence of cohomology groups:

1 // µn(K) // K× // K× δ // H1(Gal(K̄/K), µ(K̄)) // H1(Gal(K̄/K), K̄×) = 1.

x � // xn

So we have
H1(Gal(K̄/K), µn(K̄)) =

K×

(K×)n
.

Notice that if µn(K̄) ⊆ K×, then

H1(Gal(K̄/K), µn(K̄)) = Hom(Gal(K̄/K), µn(K̄)),

and so
K×

(K×)n
' Hom(Gal(K̄/K), µn(K̄)).

If x ∈ K×, then δ(x) is the cocycle given by σ 7→ σ(x1/n)

x1/n .
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Chapter 8

Elliptic Curves over Global Fields

Mordell-Weil Theorem. If K is a number field and E/K is an elliptic curve, then
E(K) is finitely generated.

Weak Mordell-Weil Theorem. Suppose in addition that n ∈ N. ThenE(K)/nE(K)
is finite.

Notation. We write H i(Gal(K̄/K),−) = H i(K,−).

Proposition 8.1

(a) If K is a number field or a local field, then there is an exact sequence

0→ E(K)

nE(K)
→ H1(K,En)→ H1(K,E)n → 0.

(b) IF K is a number field and v is any place of K, then the following diagram
commutes:

0 // E(K)
nE(K)

//

��

H1(K,En) //

��

∂v

&&N
NNNNNN
H1(K,E)n //

locv

��

0

0 // E(Kv)
nE(Kv)

// H1(Kv, En) // H1(Kv, E)n // 0
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Proof.

(a) There is an exact sequence

0→ En → E(K̄)
[n]→ E(K̄)→ 0.

Taking Gal(K̄/K)-cohomology of this sequence yields

0→ En(K)→ E(K)
[n]→ E(K)→ H1(K,En)→ H1(K,E)

[n]→ H1(K,E),

whence we obtain

0→ E(K)

nE(K)
→ H1(K,En)→ H1(K,E)n → 0.

If K is a number field, then H1(K,En) is usually infinite: e.g. suppose En ⊆ E(K).
Then also µn ⊂ K (via the existence of the Weil pairing). So

H1(K,En) ' H1(K,µn × µn) '
(

K×

(K×)n

)2

.

This motivates the following definitions:

Definition 8.2

(i) The n-Selmer group S(n)(E/K) is defined by

S(n)(E/K) = ker

{
H1(K,En)

∏
v ∂v−→
∏
v

H1(Kv, E)

}
.

(ii) The Tate-Shafarevich group of E/K is defined by

X(E/K) = ker

{
H1(K,E)

∏
v locv−→ H1(Kv, E)

}
.
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Theorem 8.3 There is an exact sequence

0→ E(K)

nE(K)
→ S(n)(E/K)→X(E/K)n → 0.

Proof. Follows directly from the definitions. Alternatively, use the following:

Kernel-Cokernel Exact Sequence. Suppose A, B, and C are abelian groups with

A
α→ B

β→ C.

Then there is an exact sequence

0→ ker(α)→ ker(βα)
α→ ker(β)→ coker(α)

β→ coker(βα)→ coker(β)→ 0.

To see this, apply the snake lemma to the following diagram:

0 // A
id //

α

��

A
α //

βα
��

B

β
��

B
β // C

id // C

Then we have
H1(K,En)

α→ H1(K,E)n
β→
∏
v

H1(Kv, E)n,

so
0→ E(K)

nE(K)
→ S(n)(E/K)→X(E/K)n → 0

is exact.

Goal. We show that S(n)(E/K) is finite.

The essential idea is to show that each element of S(n)(E/K) becomes trivial over an
extension of bounded degree which is unramified away from a set of primes depending
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only on n, E, and K. We shall then appeal to the classical finiteness theorems of
algebraic number theory to complete the proof.

Lemma 8.4 Let v be a finite place of K, and suppose that E/Kv has good re-
duction. Suppose also that char(kv) - n (kv is the residue field of Kv). Then for
any P ∈ E(KV ), there exists a finite unramified extension M(v;P )/Kv such that
P ∈ nE(M(v;P )).

Proof. Follows immediately from the fact that Kv

(
1
n
P
)
/Kv is unramified (see The-

orem 6.24).

Proposition 8.5 Let T be the set of infinite places of K, together with the finite set
of finite places of K dividing 2n∆E. Then, for any γ ∈ S(n)(E/K) and any v 6∈ T ,
there exists a finite unramified extension Kv(γ) of Kv such that γ maps to zero under
the following sequence of maps

H1(K,En)
locv //

⊆
��

H1(Kv, En)
Res // H1(Kv(γ), En).

S(n)(E/K)

Proof. For any place v of K, there exists Pv ∈ E(Kv) mapping to the image γv ∈
H1(Kv, En) of γ ∈ S(n)(E/K). If v 6∈ T , then E/Kv has good reduction. The result
now follows via considering the following diagram (cf Lemma 8.4):

E(K)
[n] //

��

E(K) //

��

H1(K,En)

��
E(Kv)

[n] //

��

E(Kv) //

��

H1(Kv, En)

��
E(M(v;P )) // E(M(v;Pv)) // H1(Mv(v;Pv))
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Lemma 8.6 For any finite extension L/K, the kernel of the restriction map S(n)(E/K)→
S(n)(E/L) is finite.

Proof. Observe that the kernel of H1(K,En) → H1(L,En) is H1(Gal(L/K), En),
which is finite.

Consequence. In order to show that S(n)(E/K) is finite, we may assume that
En ⊆ E(K). Then

H1(K,En) ' H1(K,µn)×H1(K,µn) ' (K×/K×n)2.

We make this assumption from now on.

Observe that for any finite place v ofK, we have a natural homomorphism (K×
v , K

×n
v )2 →

(Z/nZ)2 given by (α, β) 7→ (ordv(α), ordv(β)).

Proposition 8.7 Suppose that γ ∈ S(n)(E/K) and v 6∈ T . Then the image of γ
under the sequence of maps

H1(K,En)→ H1(Kv, En)
∼→ (K×

v /K
×n
v )2 “ord”−→ (Z/nZ)2

is equal to zero.

Proof. Proposition 8.5 implies that there exists a finite unramified extension Kv(γ)
of Kv such that the image of γv ∈ H1(Kv, En) in H1(Kv(γ), En) is zero. The result
now follows from the following diagram:

H1(Kv, En)
∼ //

Res
��

(K×
v /K

×n
v )2 //

��

(Z/nZ)2

H1(Kv(γ), En)
∼ // (Kv(γ)

×/Kv(γ)
×n)2 // (Z/nZ)2

where the map on the right is the identity map because Kv(γ)/Kv is unramified.

Theorem 8.8
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(a) The ideal class group Cl(oK) is finite.

(b) The unit group o×K of oK is finitely generated. Recall (to orient yourself) that
there is an exact sequence

1 // o×K
//
⊕

v finite Z // Cl(oK) // 0.

α � // (ordv(α))

(c) Let o×K,T and Cl(oK,T ) be defined via exactness of the sequence

1→ o×K,T → K× →
⊕
v 6∈T

Z→ Cl(oK,T )→ 0.

Then o×K,T is finitely generated, and Cl(oK,T ) is finite.

Proof.

(c) This follows from the fact that (from the definitions) there is an exact sequence

1→ o×K → o×K,T →
⊕
v∈T

Z→ Cl(oK)→ Cl(oK,T )→ 0. (∗)

Aliter: Apply the kernel-cokernel exact sequence to

K× α→
⊕
all v

Z β→
⊕
v 6∈T

Z

to obtain (∗).

Lemma 8.9 For any finite subset T of places of K which contains the infinite places
of K, write NT for the kernel of the map

K×/K×n →
⊕
v 6∈T

Z/nZ

given by α 7→ (ordv(α))v 6∈T . Then there is an exact sequence

1→
o×K,T

o×nK,T
→ NT → Cl(oK,T )n.
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Proof. Consider the following diagram:

1 // o×K,T //

n

��

K× //

n

��

⊕
v 6∈T Z //

n

��

Cl(oK,T ) //

n

��

0

1 // o×K,T // K× //

��

⊕
v 6∈T Z //

��

Cl(oK,T ) // 0

K×

K×n
//
⊕

v 6∈T
Z
nZ

Suppose α ∈ K× represents an element of NT . Then n | ordv(α) for all v 6∈ T , so we
can map α to the class of

c =

(
ordv(α)

n

)
v 6∈T
∈ Cl(oK,T ).

Clearly we have nc = 0. Suppose c = 0. Then there exists β ∈ K× such that
ordv(β) = ordv(α)

n
for all v 6∈ T . Then α

βn ∈ o×K,T and is well-defined up to an element
of o×K,T .

Corollary 8.10 S(n)(E/K) is finite.

Proof. Follows from Proposition 8.7 and Lemma 8.9.

Theorem 8.11 (Descent Theorem.) Suppose that A is an abelian group and that
there is a function h : A→ R (a height function) satisfying the following properties:

(i) Suppose Q ∈ A. Then there exists a constant CQ (depending only on A and Q)
such that for all P ∈ A, h(P +Q) ≤ 2h(P ) + CQ.

(ii) There exists an integer m ≥ 2 and a constant C2 (depending only on A) such
that for all P ∈ A, h(mP ) ≥ m2h(P )− C2.

(iii) For every constant C3, #{P ∈ A : h(P ) ≤ C3} <∞.
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Then, if A/mA is finite (m as in (ii)), the group A is finitely generated.

Proof. Let Q1, . . . , Qr ∈ A be a set of representatives of the cosets in A/mA, and
suppose that P ∈ A. Then we may write

P = mP1 +Qi1 (1 ≤ i1 ≤ r),

P1 = mP2 +Qi2 ,

...
...

Pn−1 = mPn +Qin .

Then, for any j ≥ 1,

h(Pj) ≤
1

m2
(h(mPj) + C2)

=
1

m2
(h(Pj−1 −Qij) + C2)

≤ 1

m2
(2h(Pj−1) + C ′

1 + C2) (†)

(using (i) above), where C ′
1 = max1≤i≤r{CQi

}. Note that C ′
1 and C2 are both inde-

pendent of P .

Now apply (†) repeatedly starting from Pn and working backward to P . We obtain

h(Pn) ≤
(

2

m2

)
h(Pn−1) +

1

m2
(C ′

1 + C2),

so

h(Pn) ≤
(

2

m2

)n
h(P ) +

(
1

m2
+

2

m4
+

4

m6
+ · · ·+ 2n−1

m2n

)
(C ′

1 + C2)

<

(
2

m2

)n
h(P ) +

m2

m2 − 2
(C ′

1 + C2)

≤ 2−nh(P ) + 2(C ′
1 + C2)

(since m ≥ 2). So by taking n sufficiently large, we may ensure that h(Pn) < 1 +
2(C ′

1 + C2). Now

P = mnPn +
n∑
j=1

mj−1Qij
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(from the definitions). Hence it follows that each element P ∈ A is a linear combina-
tion of points in the set

{Q1, . . . , Qr} ∪ {Q ∈ A | h(Q) ≤ 1 + 2(C ′
1 + C2)},

and (iii) implies that this set is finite.

Definition 8.12 Suppose that K is a number field, and let P = [x0 : · · · : xN ] ∈
PN(K), xi ∈ K, 0 ≤ i ≤ N . The height HK(P ) of P relative to K is defined by

HK(P ) =
∏
v∈MK

max{|x0|v, . . . , |xN |v}[Kv :Qv ] =
∏
v∈MK

{|x0|v, . . . , |xN |v}nv .

Proposition 8.13

(a) HK(P ) is independent of the choice of homogeneous coordinates of P .

(b) HK(P ) ≥ 1 for all P ∈ PN .

(c) If L/K is any finite extension, then

HL(P ) = HK(P )[L:K].

Proof.

(a) For any λ ∈ K×, we have

∏
v

max
i
{|λxi|v}nv =

(∏
v

|λ|nv
v

)∏
v

max
i
{|xi|v}nv

=
∏
v

max
i
{|xi|v}nv

(via the product formula).
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(b) For any point P ∈ PN(x), we may choose coordinates [x0 : · · · : xN ] such that
at least one xi = 1. Then every factor in∏

v

max
i
{|xi|v}nv

is at least 1.

(c) [Recall that ∑
w∈ML
w|v

nw = [L : K]nv

for v ∈MK .] We have

HL(P ) =
∏
w∈ML

max{|xi|w}nw

=
∏
v∈MK

∏
w∈ML
w|v

max{|xi|v|}nw

=
∏
v∈MK

max{|xi|v}[L:K]nv

= HK(P )[L:K].

Definition 8.14 Suppose that P ∈ PN(Q̄). The absolute height H(P ) of P is
defined by

H(P ) = HK(P )1/[K:Q],

where K is any number field such that P ∈ PN(K).

Proposition 8.15 Suppose P = [x0 : · · · : xN ] ∈ PN(Q̄) and σ ∈ Gal(Q̄/Q). Then
H(σ(P )) = H(P ).

Proof. Choose a number field K such that P ∈ PN(K). Write MK and Mσ(K) for
the set of absolute values on K and σ(K), respectively. Then we have isomorphisms
σ : K

∼→ σ(K) and σ : MK
∼→ Mσ(K) given by v 7→ σ(v) and |σ(x)|σ(v) = |x|v for all
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x ∈ K. Also σ : Kv
∼→ σ(K)σ(V ) (isomorphism on completions), and so nv = nσ(v)

(equality of local degrees). Thus

Hσ(K)(σ(P )) =
∏

w∈Mσ(K)

max{|σ(xi)|w}nw

=
∏
v∈MK

max{|σ(xi)|σ(v)}nσ(v)

=
∏
v∈MK

max{|xi|v}nv

= HK(P ),

whence the result follows.

Theorem 8.16 For any numbers B,D ≥ 0, the set

{P ∈ PN(Q̄) | H(P ) ≤ B and [Q(P ) : Q] ≤ D}

is finite. So, for any fixed number field K, the set {P ∈ PN(K) | HK(P ) ≤ B} is
finite.

Proof. Suppose that P = [x0 : · · · : xN ] with some xi = 1. Then, for any v and for
any i, we have

max{|x1|v, . . . , |xN |v}nv ≥ max{|xi|v, 1}nv .

So, multiplying over all v and taking an appropriate root gives H(P ) ≥ H(xi) for
0 ≤ i ≤ N . Plainly Q(xi) ⊆ Q(P ).

It suffices to prove that for each 1 ≤ d ≤ D, the set

{x ∈ Q̄Q | H(x) ≤ B and [Q(x) : Q] = d}

is finite (i.e. we’ve reduced to the case N = 1). Set K = Q(x), and suppose [K :
Q] = d. Let x1, . . . , xd denote the Galois conjugates of x over Q. Set

Fx(T ) =
d∏
j=1

(T − xj) =
d∑
r=0

(−1)rSr(x)T
d−r
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— the minimal polynomial of x over Q. Then

|Sr(x)|v =

∣∣∣∣∣ ∑
1≤i1<···<ir≤d

xi1 · · ·xir

∣∣∣∣∣
v

≤ c(v, r, d) max
1≤i1<···<ir≤d

|xi1 · · ·xir |v

≤ c(v, r, d) max
1≤i≤d

|xi|rv,

where

c(v, r, d) =

{(
d
r

)
≤ 2d if v is archimedean,

1 if v is nonarchimedean.

Hence

max{|S0(x)|v, . . . , |Sd(x)|v} ≤ c(v, d)
d∏
i=0

max{|xi|v, 1}d,

where

c(v, d) =

{
2d if v is archimedean,
1 if v is nonarchimedean.

Multiplying over all v ∈MK and taking [K : Q]th roots yields

H(S0(x), . . . , Sd(x)) ≤ 2d
d∏
i=0

H(xi)
d = 2dH(x)d

2

(via Proposition 8.15). So if x lies in the set

{x ∈ Q̄ | H(x) ≤ B and [Q(x) : Q] = d},

then x is a root of a polynomial Fx(T ) ∈ Q[T ] whose coefficients S0, . . . , Sd satisfy

H(S0, . . . , Sd) ≤ s3Bd2 .

There are only finitely many possibilities for such an Fx(T ), and hence there are only
finitely many possibilities for x.

Corollary 8.17 (Kronecker) Let K be a number field and P = [x0 : · · · : xN ] ∈
PN(K). Fix any i with xi 6= 0. Then H(P ) = 1 iff xj/xi is a root of unity or zero for
every 0 ≤ j ≤ n.
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Proof. Without loss of generality we may divide the coordinates of P and then
reorder them so that P = (1, x1, . . . , xN). Suppose that every xj is zero or a root of
unity. Then max{1, |xj|v} = 1 for every v, and so H(P ) = 1. Suppose conversely
that H(P ) = 1. Set

P r = (1, xr1, x
r
2, . . . , x

r
N),

r = 1, 2, . . . Then H(P r) = H(P )r = 1 for each r. Theorem 8.16 implies that the
sequence P, P 2, P 3, . . . contains only finitely many distinct points, and so we may
choose r > s ≥ 1 such that P s = P r. Then xsj = xrj (1 ≤ j ≤ n) (since we’ve
dehomogenized with x0 = 1), so each xj is a root of unity or zero.

8.1 Heights on Elliptic Curves
Recall. If f ∈ K̄(E), then we have a max f : E → P1 given by

P 7→

{
[1, 0] if P is a pole of f ,
[f(P ), 1] otherwise.

Definition 8.18 The (absolute logarithmic) height on PN(Q̄) is defined by h :
PN(Q̄)→ R, given by P 7→ logH(P ). (So H(P ) ≥ 1 implies h(P ) ≥ 0.)

Definition 8.19 Suppose that E/K is an elliptic curve and that f ∈ K̄(E) is a
nonconstant function. The height on E relative to f is defined by hf : E(K̄) → R,
given by P 7→ h(f(P )).

Proposition 8.20 Suppose E/K is an elliptic curve and f ∈ K(E) a nonconstant
function. Then, for any constant C,

#{P ∈ E(K) | hf (P ) ≤ C} <∞.
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Proof. The function f gives a map from {P ∈ E(K) | hf (P ) ≤ C} to {Q ∈ P1(K) |
H(Q) ≤ eC}, and this map is finite-to-one. Now apply Theorem 8.16.

Definition 8.21 A morphism of degree d between projective spaces is a map F :
PN → PM given by P 7→ [f0(P ), . . . , fM(P )], where f0, . . . , fM ∈ Q̄[X0, . . . , XN ] are
homogeneous polynomials of degree d with no common zero in Q̄ except X0 = · · · =
XN = 0.

Theorem 8.22 Suppose F : PN → PM is a morphism of degree d. Then there exist
constants C1 and C2, depending only upon F , such that for all P ∈ PN(Q̄),

C1H(P )d ≤ H(F (P )) ≤ C2H(P )d.

Proof. Set F = [f0, . . . , fM ], fi homogeneous for all i, and let P = [x0, . . . , xN ] ∈
PN(Q̄). Let K be a field containing all xi’s and all of the coefficients of all of the fj’s.
Define

|P |v = max
i
{|xi|v},

|F (P )|v = max
j
{|fj(P )|v},

|F |v = max{|a|v : a is a coefficient of some fj}.

Then
HK(P ) =

∏
v

|P |nv
v

and
HK(F (P )) =

∏
v

|F (P )|nv
v .

So we define
HK(F ) =

∏
v

|F |nv
v .

(This means that HK(F ) := HK([a0, a1, . . .]), where the ai’s are all of the coefficients
of the fj’s.) Set

ε(v) =

{
1 if v | ∞,
0 if v -∞.
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So, for example,
|t1 + · · ·+ tn|v ≤ nε(n) max{|t1|v, . . . , |tn|v}

(triangle inequality).

We now show the upper bound. Each fi is homogeneous of degree d. So, for each i,
we have

|fi(P )|v ≤ C
ε(v)
1 |F |v|P |dv

(via the triangle inequality) (e.g. take C1 =
(
N+d
d

)
, the number of monomials of degree

d in N + 1 variables). Also

|F (P )|v ≤ C
ε(v)
1 |F |v|P |dv.

Now raising to the nth
v power, multiplying over all v, and taking [K : Q]th roots yields

H(F (P )) ≤ C1H(F )H(P )d.

We now show the lower bound. Recall Hilbert’s Nullstellensatz: Suppose that a is
an ideal of K[X0, . . . , XN ], and let f be any polynomial in K[X0, . . . , XN ] such that
f(α0, . . . , αN) = 0 for every zero of a in Q̄. Then there exists an integer m > 0 such
that fm ∈ a.

Suppose
{Q ∈ AN+1(Q̄) : f0(Q) = · · · = fN(Q) = 0} = {(0, . . . , 0)}.

Then by the Nullstellensatz, the ideal (f0, . . . , fM) ∈ Q̄[X0, . . . , XN ] contains some
power of each of X0, . . . , XN . Thus for some e ≥ 1, there exist polynomials gij ∈
Q̄[X0, . . . , XN ] such that

Xe
i =

M∑
j=0

gijfj, 0 ≤ i ≤ N. (†)

Without loss of generality, we may assume:

• Each gij ∈ K[X0, . . . , XN ].

• Each gij is homogeneous of degree e− d.
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Set
|G|v := max{|b|v : b is a coefficient of some gij}

and
HK(G) :=

∏
v

|G|nv
v .

Now P = [X0, . . . , XN ], and so (†) implies

|xi|ev =

∣∣∣∣∣
M∑
j=0

gij(P )fj(P )

∣∣∣∣∣
v

≤ C
ε(v)
2 max

j
{|gij(P )fj(P )|v} ,

so
|P |ev ≤ C

ε(v)
2 max

i,j
{|gij(P )|v}|F (P )|v (∗)

(taking the maximum over i). Now deg gij = e− d, so

|gij(P )|v ≤ C
ε(v)
3 |G|v|P |e−dv ,

whence (∗) gives
|Pv|d ≤ C

ε(v)
4 |G|v|F (P )|v,

and now the lower bound follows.

Theorem 8.23 Suppose E/K is an elliptic curve, and that f ∈ K(E) is even (i.e.
f ◦ [−1] = f). Then for all P,Q ∈ E(K̄), we have

hf (P +Q) + hf (P −Q) = 2hf (P ) + 2hf (Q) +OE,f (1).

Proof. Let E : y2 = x3 + Ax + B, say. We first consider the case of f = x. Then
hx(O) = 0 and hx(−P ) = hx(P ), so the result holds if P = O or Q = O. Thus
suppose P 6= O and Q 6= O. Let x(P ) = [x1, 1], x(Q) = [x2, 1], x(P + Q) = [x3, 1],
and x(P −Q) = [x4, 1]. Then (by the addition formulae and algebra)

x3 + x4 =
2(x1 + x2)(A+ x1x2) + 4B

(x1 + x2)2 − 4x1x2

,

x3x4 =
(x1x2 − A)2 − 4B(x1 + x2)

(x1 + x2)2 − 4x1x2

.
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Define g : P2 → P2 by

[t, u, v] 7→ [u2 − 4tv, 2u(At+ v) + 4Bt2, (v − At)2 − 4Btu].

We claim that there is a commutative diagram

(P,Q) � // (P +Q,P −Q)

(P,Q)
_

��

E × E G //

��
σ

��

E × E

��
σ

��

(x(P ), x(Q)) P1 × P1

��

P1 × P1

��

([α1, β1], [α2, β2])_

��

P2
g // P2 [β1β2, α1β2 + α2β1, α1α2]

[The idea is to treat t, u, and v as 1, x1 + x2, and x1x2, respectively.] This follows
from formulae for x3 and x4.

We claim that g is a morphism. We are required to prove that the three homogeneous
polynomials defining g have no common zero except t = u = v = 0. So suppose
t = 0. Then u2 − 4tv = 0 and (v − At)2 − 4Btu = 0 imply u = v = 0. Thus we
may assume t 6= 0 and define x := u/2t. Then u2 − 4tv = 0 becomes x2 = v/t,
2u(At+v)+4Bt2 = 0 become ψ(x) := 4x3 +4Ax+4B = 0, and (v−At)2−4Btu = 0
becomes φ(x) := x4 − 2Ax2 − 8Bx+ A2 = 0. Observe that

(12x2 − 16A)φ(x)− (3x2 − 5Ax+ 27B)ψ(x) = 4(4A3 + 27B2) 6= 0

(since E is nonsingular), so ψ(x) and φ(x) have no common zeros, so g is a morphism.
Hence, from the diagram, we have

h(σ(P +Q,P −Q)) = h(σ ◦G(P,Q))

= h(g ◦ σ(P,Q))

= 2h(σ(P,Q)) +O(1)

(via Theorem 8.22, since g is a morphism of degree 2).

We claim that for all R1, R2 ∈ E(K̄), we have h(σ(R1, R2)) = hx(R1)+hx(R2)+O(1).
[Then

h(σ(P +Q,P −Q)) = 2h(σ(P,Q)) +O(1),
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so
hx(P +Q) + hx(P −Q) = hx(P ) + hx(Q) +O(1),

as desired.] First observe that if R1 = O or R2 = O, then h(σ(R1 +R2)) = hx(R1) +
hx(R2). Thus assume R1 6= O and R2 6= O, and set x(R1) = [α1, 1] and x(R2) =
[α2, 1]. Then h(σ(R1, R2)) = h([1, α1+α2, α1α2]) and hx(R1)+hx(R2) = h(α1)+h(α2).
Now, just as in the proof of Theorem 8.16 (using the polynomial (T − α1)(T − α2)),
we have

h([1, α1 + α2, α1α2]) ≤ h(α1) + h(α2) + log 2.

This establishes the claim. So we have now proven the theorem when f = x.

For an arbitrary even function f , we argue as follows: Suppose that f, g ∈ K̄(E) are
even functions. We claim that (deg g)hf = (deg f)hg + O(1). K(x) is the subfield of
even functions in K(E) (see Silverman III, §2.3.1). Thus there exists ρ(x) in K(x)
such that the following diagram commutes:

E

x
��

f

  A
AA

AA
AA

A

P1
ρ(x)
// P1

Then hf = hx◦ρ = (deg ρ)hx + O(1) (via Theorem 8.22). The diagram implies that
deg(f) = deg(x) deg(ρ) = 2 deg(ρ). So

2hf = 2(deg ρ)hx +O(1) = (deg f)hx +O(1). (∗)

Similarly,
2hg = (deg g)hx +O(1), (∗∗)

and now the claim follows from (∗) and (∗∗).

From this claim, we have hf = 1
2
(deg f)hx +O(1), and now the theorem follows for f

because we’ve already shown that

hx(P +Q) + hx(P −Q) = 2hx(P ) + 2hx(Q) +O(1).

Corollary 8.24 Suppose that E/K is an elliptic curve, and f ∈ K(E) is an even
function.
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(a) Let Q ∈ E(K). Then for all P ∈ E(K̄), we have

hf (P +Q) ≤ 2hf (P ) +OE,f,Q(1).

(b) Suppose m ∈ Z. Then for all P ∈ E(K̄),

hf ([m]P ) = m2hf (P ) +OE,f,m(1).

Proof.

(a) Theorem 8.23 implies that

hf (P +Q) = 2hf (P ) + 2hf (Q)− hf (P −Q) +O(1) ≤ 2hf (P ) +O(1)

since hf (P −Q) ≥ 0.

(b) It suffices to prove the result for m ≥ 0 since f is even. It is true for m = 0 and
1 plainly! So assume that the result holds for m and m− 1. Applying Theorem
8.23 with P replaced by [m]P and Q by P gives

hf ([m+ 1]P ) = −hf ([m− 1]P ) + 2hf ([m]P ) + 2hf(P ) +O(1)

= −((m− 1)2 + 2m2 + 2)hf (P ) +O(1)

= (m+ 1)2hf (P ) +O(1),

as desired.

Theorem 8.25 (Mordell-Weil Theorem.) Let K be a number field, and let E/K be
an elliptic curve. Then E/K is finitely generated.

Proof. We apply Theorem 8.11 (the Descent Theorem) with m = 2. Let f ∈ K(E)
be any nonconstant even function, and consider hf : E(K̄) → R. Then hf satisfies
the following properties:

(i) Suppose Q ∈ E(K). Then there exists a constant C1 (depending only on E, f ,
and Q) such that for all P ∈ E(K), hf (P + Q) ≤ 2hf (P ) + C1. (This follows
from Corollary 8.24(a).)
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(ii) There exists a constant C2 (depending only upon E and f) such that hf ([2]P ) ≥
4hf (P )− C2. (This follows from Corollary 8.24(b) with m = 2.)

(iii) For every constant C3, #{P ∈ E(K) | hf (P ) ≤ C3} < ∞. (This follows from
Proposition 8.20.)

The goal is to construct an actual quadratic form on E(K) that differs from hf by a
bounded quantity.

Proposition 8.26 Suppose E/K is an elliptic curve. Let f ∈ K(E) be a nonconstant
even function, and let P ∈ E(K̄). Then

1

deg f
lim
N→∞

4−Nhf ([2
N ]P )

exists and is independent of f .

Proof. The strategy is to show that 4−Nhf ([2
N ]P ) is a Cauchy sequence. Corollary

8.24(b) (with m = 2) implies that there exists a constant C such that for all Q ∈
E(K̄), we have

|hf ([2]Q)− 4hf (Q)| ≤ C. (†)

Hence if N ≥M ≥ 0, then

|4−Nhf ([2N ]P )− 4−Mhf ([2
M ]P )| =

∣∣∣∣∣
N−1∑
n=M

{
4−n−1hf ([2

n+1]P )− 4−nhf ([2
n]P )

}∣∣∣∣∣
≤

N−1∑
n=M

4−n−1|hf ([2n+1]P )− 4hf ([2
n]P )|

≤
N−1∑
n=M

4−n−1C (by (†) with Q = [2n]P )

≤ C

4M
.

Hence the sequence is Cauchy and so converges.
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Suppose now that g ∈ K(E) is another nonconstant even function. Then, from the
proof of Theorem 8.23, we have

(deg g)hf = (deg f)hf +O(1).

Hence
(deg g)4−Nhf ([2

N ]P )− (deg f)4−Nhg([2
N ]P ) = 4−NO(1)→ 0

as N →∞. Therefore the limit is independent of the choice of f , as claimed.

Definition 8.27 The canonical (or Néron-Tate) height ĥ : E(K̄)→ R is defined by

ĥ(P ) =
1

deg f
lim
N→∞

4−Nhf ([2
N ]P ).

Theorem 8.28 (Néron-Tate.) Let E/K be an elliptic curve.

(a) For all P,Q ∈ E(K̄),

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q)

(the parallelogram law).

(b) For all P ∈ E(K̄) and for all m ∈ Z, ĥ([m]P ) = m2ĥ(P ).

(c) ĥ is a quadratic form on E, i.e. ĥ is even, and the pairing 〈 , 〉 : E(K̄)×E(K̄)→
R given by 〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q) is bilinear.

(d) Suppose that P ∈ E(K̄). Then ĥ(P ) ≥ 0, and ĥ(P ) = 0 iff P ∈ E(K̄)tors.

(e) Suppose that f ∈ K(E) is a nonconstant even function. Then (deg f)ĥ =
hf +OE,f (1).

(f) If ĥ′ : E(K̄)→ R is any other function which satisfies (e) for some nonconstant
function f and (b) for any one integer m ≥ 2, then ĥ′ = ĥ.

Proof.
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(e) From the proof of Proposition 8.26, there exists a constant C such that N ≥
M ≥ 0, and for all P ∈ E(K̄) we have

|4−Nhf ([2N ]P )− 4−Mhf ([2
M ]P )| ≤ C

4M
.

Set M = 0 and let N →∞ to obtain

|(deg f)ĥ(P )− hf (P )| ≤ C,

as desired.

(a) Theorem 8.23 implies that

hf (P +Q) + hf (P −Q) = 2hf (P ) + 2hf (Q) +O(1).

Replace P by [2n]P and Q by [2n]Q; multiply through by 1
deg f

4−N , and let
N →∞. This yields

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q)

(the O(1) disappears).

(b) Corollary 8.24(b) implies that hf ([m]P ) = m2hf(P ) + O(1). Replace P by
[2N ]P , multiply through by 1

deg f
4−N , and let N → ∞. This gives ĥ([m]P ) =

m2ĥ(P ).

(c) (Linear algebra: Any function satisfying the parallelogram law is quadratic.)
Setting P = 0 in the parallelogram law yields ĥ(Q) = ĥ(−Q), so ĥ is even. It
suffices to prove that 〈P + Q,R〉 = 〈P,R〉 + 〈Q,R〉. Now we have (using the
parallelogram law and the fact that ĥ is even):

ĥ(P +Q+R) + ĥ(P +R−Q)− 2ĥ(P +R)− 2ĥ(Q) = 0, (1)

ĥ(P −R +Q) + ĥ(P +R−Q)− 2ĥ(P )− 2ĥ(R−Q) = 0, (2)

ĥ(P −R +Q) + ĥ(P +R +Q)− 2ĥ(P +Q)− 2ĥ(R) = 0, (3)

2ĥ(R +Q) + 2ĥ(R−Q)− 4ĥ(R)− 4ĥ(Q) = 0. (4)

Then (1)− (2) + (3)− (4) implies the result.

(d) Plainly hf (P ) ≥ 0, so ĥ(P ) ≥ 0 for all P ∈ E(K̄). Suppose that P ∈ E(K̄)tors.
Then [m]P = 0 for some m ≥ 1, and now (b) gives

ĥ(P ) = m−2ĥ([m]P ) = m−2ĥ(O) = 0.
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Suppose conversely that P ∈ E(K ′) (K ′/K a finite extension) with ĥ(P ) = 0.
Then, for every m ∈ Z, we have (from (b)) ĥ([m]P ) = m−2ĥ(P ) = 0. Now (e)
implies that there exists a constant C such that for each m ∈ Z, we have

hf ([m]P ) = | deg(f)ĥ([m]P )− hf ([m]P )| ≤ C.

So {P, 2P, 3P, . . .} ⊆ {Q ∈ E(K ′) | hf (Q) ≤ C}, and therefore P has finite
order since this last set is finite.

(f) Suppose that ĥ′ satisfies ĥ′ ◦ [m] = m2ĥ′ and (deg f)ĥ′ = hf + O(1) for some
m ≥ 2. Then ĥ′ ◦ [mN ] = m2N ĥ′ and

ĥ′ = m−2N ĥ′ ◦ [mN ]

= m−2N(ĥ ◦ [mN ] +O(1))

= ĥ+m−2NO(1)

(since ĥ satisfies (b)). Now let N →∞ to obtain ĥ′ = ĥ.

Lemma 8.29 Suppose that V is a finite-dimensional R-vector space, and let L ⊂ V
be a lattice. Let q : V → R be a positive definite quadratic form satisfying:

(i) If P ∈ L, then q(P ) = 0 iff P = 0.

(ii) For every constant C, #{P ∈ L | q(P ) ≤ C} < ∞. Then q is positive definite
on V .

Proof. We may choose a basis of V such that for any X = (x1, . . . , xn) ∈ V , we have

q(X) =
s∑
i=1

x2
i −

t∑
i=1

x2
s+i,

where s + t ≤ n = dim(V ). We may view V ' Rn via this choice of basis. Suppose
that s 6= n. Let λ be the length of the shortest vector in L, i.e.

λ = inf{q(P ) | P ∈ L, P 6= 0}.

Then (i) and (ii) imply that λ > 0. Now consider the set

B(δ) :=

{
(x1, . . . , xn) ∈ Rn

∣∣∣∣ x2
1 + · · ·+ x2

s ≤
λ

2
, x2

s+1 + · · ·+ x2
t ≤ δ

}
.
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Then length (using q!) of any vector in B(δ) is at most λ/2, and so B(δ) ∩ L = {0}.
Now B(δ) is compact, convex, and symmetric about the origin, and Vol(B(δ))→∞
as δ →∞. This contradicts Minkowski’s convex body theorem.

Theorem 8.30 (Minkowski.) Let L be a lattice in Rn with fundamental paral-
lelepiped D, and suppose that B ⊆ Rn is compact, convex, and symmetric about the
origin. If Vol(B) ≥ 2n Vol(D), then B contains a nonzero point of L.

Proof. We claim that if S is a measurable set in Rn with Vol(S) > Vol(D), then S
contains distinct points α and β with α, β ∈ L.

Note that
Vol(S) =

∑
`∈L

Vol(S ∩ (D + `)),

D will contain a unique translate (by an element of L) of each set S ∩ (D+ `). Since
Vol(S) > Vol(D), at least two of these sets will overlap, so there exist α, β ∈ S such
that α− λ = β − λ′ for distinct λ, λ′ ∈ L, so α− β = λ− λ′ ∈ L \ {0}, as claimed.

Now take S = 1
2
B =

{
x
2

∣∣ x ∈ B}. Then Vol(S) = 1
2n Vol(B) > Vol(D), so there exist

α, β ∈ B such that α
2
− β

2
∈ L. Since B is symmetric about the origin, −β ∈ B. Since

B is convex, 1
2
(α+ (−β)) ∈ B.

Theorem 8.31 The Néron-Tate height is a positive definite quadratic form on
R⊗ E(K).

Proof. Apply Lemma 8.29 to the lattice E(K)/E(K)tors in E(K)⊗ R.

Definition 8.32 The Néron-Tate height pairing on E/K is defined by 〈 , 〉 :
E(K̄)× E(K̄)→ R, given by 〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q).

Definition 8.33 The elliptic regulator RE/K is the volume of the fundamental
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domain of E(K)/E(K)tors with respect to ĥ, i.e. if P1, . . . , Pr ∈ E(K) form a basis of
E(K)/E(K)tors, then RE/K := det(〈Pi, Pj〉). (If r = 0, set RE/K = 1.)

Corollary 8.34 RE/K > 0.

So now we have: E(K) ' E(K)tors × Zr.

Conjecture 8.35 For any fixed K, r can be arbitrarily large.

Conjecture 8.36 Suppose K is a number field, and E/K is a number field. Then
there exists a constant c([K : Q]) such that for any point P ∈ E(K) of infinite order,
we have

ĥ(P ) ≥ c([K : Q]) max{1, h(jE), log |NK/Q(DE/K)|},

where DE/K is the minimal discriminant of E/K.

Theorem 8.37 (Cassels.) Suppose K is a local field with char(K) = 0, char(k) =
p > 0, and let E/K be an elliptic curve with Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ oK . (†)

Let P ∈ E(K) have exact order m ≥ 2.

(a) If m 6= pn for some n, then x(P ), y(P ) ∈ oK .

(b) If m = pn, then π2rx(P ), π3ry(P ) ∈ oK , with

r =

⌊
v(p)

pn − pn−1

⌋
.

Proof. First observe that x(P ) ∈ oK implies y(P ) ∈ oK , so in this case, there is
nothing to prove. Thus v(x(P )) < 0. Without loss of generality, we may assume that
the Weierstraß equation for E is minimal, for if (x′, y′) are coordinates for a minimal
Weierstraß equation, then v(x(P )) ≥ v(x′(P )) and v(y(P )) ≥ v(y′(P )).
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(a) (†) implies that 3v(x(P )) = 2v(y(P )) = −6s (some integer s ≥ 2). Also
v(x(P )) > 0 implies that P ∈ E1(K) (the kernel of reduction), so P ↔
−x(P )/y(P ) ∈ Ê(m). But Ê(m) contains no prime-to-p torsion, so (a) follows.

(b) This follows from a general property of formal groups (see Silverman, Ch. IV,
Theorem 6.1): if −x(P )/y(P ) has exact order pn in Ê(m), then

s = v

(
−x(P )

y(P )

)
≤ v(P )

pn − pn−1
.

Thus π2sx(P ), π3sy(P ) ∈ oK , implying the result.

Theorem 8.38 Suppose that K is a number field, and let E/K be an elliptic curve
with Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ oK for all i.

Let P ∈ E(K) be a point of exact order m ≥ 2.

(a) If m is not a prime power, then x(P ), y(P ) ∈ oK .

(b) Suppose m = pn for some prime p. For each finite place v of K, set

rv :=

⌊
ordv(p)

pn − pn−1

⌋
.

Then ordv(x(P )) ≥ −2rv and ordv(y(P )) ≥ −3rv, and so if ordv(p) = 0, then
x(P ) and y(P ) are v-integral.

Theorem 8.39 (Nagell-Lutz.) Suppose E/Q is an elliptic curve with Weierstraß
equation

E : y2 = x3 + Ax+B, A,B ∈ Z.

Let P ∈ E(Q)tors, P 6= O.

(a) We have x(P ), y(P ) ∈ Z.

(b) Either 2P = O or y(P )2 | (4A3 + 27B2).
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Proof.

(a) Set m to be the exact order of P . If m = 2, then y(P ) = 0 (chord-tangent
method!), so x(P ) is integral, so x(P ) ∈ Z since P ∈ E(Q). If m > 2, the result
follows from Theorem 8.38 (rv = 0 for all v).

(b) Assume 2P 6= O; then y(P ) 6= 0. So applying (a) to P and 2P , we have
x(P ), y(P ), x(2P ) ∈ Z. Set φ(x) := x4 − 2Ax2 − 8Bx + A2 and ψ(x) := x3 +

Ax + B so that x(2P ) = φ(x(P ))
4ψ(x(P ))

(duplication formula — see Silverman III,
§2.3(d)) and f(x)φ(x) − g(x)ψ(x) = 4A3 + 27B2, where f(x) = 3x2 + 4A and
g(x) = 3x2 − 5Ax− 27B. Then

y(P )2[4f(x(P ))x(2P )− g(x(P ))] = 4A3 + 27B2 (∗)

(via the duplication formula). The result follows since all quantities in (∗) lie
in Z.
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Chapter 9

Diophantine Approximation on
Elliptic Curves

Proposition 9.1 (Dirichlet.) Suppose α ∈ R \ Q. Then there exist infinitely many
p/q ∈ Q such that ∣∣∣∣pq − α

∣∣∣∣ ≤ 1

q2
.

Proof. Let Q ∈ Z be large, and consider {qα− bqαc | q = 0, 1, 2, . . . , Q}. Since α is
irrational, the numbers in this set are distinct. There are Q + 1 of them, and so the
pigeonhole principle implies that there exist 0 ≤ q1 < q2 ≤ Q such that

|(q1α− bq1αc)− (q2α− bq2αc)| ≤
1

Q
.

Thus ∣∣∣∣bq2αc − bq1αcq2 − q1
− α

∣∣∣∣ ≤ 1

(q2 − q1)Q
≤ 1

(q2 − q1)2
.

The result now follows, since Q may be taken to be arbitrarily large.

[Hurwitz: 1
q2

may be replaced by 1√
5q2

, and this is the best possible.]

Proposition 9.2 (Liouville.) Suppose α ∈ Q̄ with [Q(α) : Q] = d ≥ 2. Then there
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exists a constant C = C(α) > 0 such that for all p
q
∈ Q, we have∣∣∣∣pq − α

∣∣∣∣ ≥ C

qd
.

Proof. Let f(T ) = adT
d + · · ·+ a0 ∈ Z[T ] be the minimal polynomial for α, and set

C1 = sup{f ′(t) | α− 1 ≤ t ≤ α+ 1}. Suppose
∣∣∣pq − α∣∣∣ ≤ 1. Then∣∣∣∣f (pq

)∣∣∣∣ =

∣∣∣∣f (pq
)
− f(α)

∣∣∣∣ ≤ C1

∣∣∣∣pq − α
∣∣∣∣ (∗)

via the mean value theorem. Also qdf
(
p
q

)
∈ Z, and certainly f

(
p
q

)
6= 0 (since f

can’t have any rational roots). Thus∣∣∣∣qdf (pq
)∣∣∣∣ ≥ 1. (∗∗)

Thus (∗) and (∗∗) give ∣∣∣∣pq − α
∣∣∣∣ ≥ C

qd
,

where C = min
{

1
C1
, 1
}

.

Question. If d = 3, what is the best possible exponent?

Definition 9.3 Suppose we are given a function τ : N→ R>0. We say that a number
field K has approximation exponent τ if the following holds: Suppose α ∈ K̄ with
[K(α) : K] = d. Let v be an absolute value on K, extended to K(α). Then, for any
constant C, there exist only finitely many x ∈ K such that |x−α|v < C ·HK(x)−τ(d),
where HK(x) =

∏
v max{1, |x|v}nv and nv := [Kv : Qv].

Liouville: Q has approximation exponent d+ ε for any ε > 0.
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Theorem 9.4 (Roth.) For every ε > 0, every number field has approximation expo-
nent 2 + ε.

Example. x3−5y3 = α for some fixed α. Suppose x, y ∈ Z is a solution, with y 6= 0.
Then if ζ3 = 1, ζ 6= 1, we have(

x

y
− 3
√

5

)(
x

y
− ζ 3
√

5

)(
x

y
− ζ2 3
√

5

)
=

α

y3
,

so (
x

y
− 3
√

5

)
=

α

y3

(
x

y
− ζ 3
√

5

)−1(
x

y
− ζ2 3
√

5

)−1

,

so ∣∣∣∣xy − 3
√

5

∣∣∣∣ ≤ C

|y|3
,

for some constant C independent of x and y. Then Theorem 9.4 implies that there
exist only finitely many possibilities for x and y. Thus the Diophantine equation
x3 − 5y3 = α has only finitely many solutions with x, y ∈ Z.

Definition 9.5 Suppose C/K is a curve with P,Q ∈ C(Kv). Let tQ ∈ Kv(C) be a
function with a zero of order e ≥ 1 at Q. The v-adic distance dv(P,Q) from P to Q
is dv(P,Q) = min{|tQ(P )|1/ev , 1}. We sometimes write dv(P, tQ) instead.

Proposition 9.6 Suppose Q ∈ C(Kv), and let tQ, t′Q ∈ Kv(C) be functions vanishing
at Q. Then

lim
P∈C(K1)
P→Q

log dv(P, t
′
Q)

log dv(P, tQ)
= 1.

Proof. Suppose ordQ(tQ) = p and ordQ(t′Q) = e′. Then φ :=
(t′Q)e

(tQ)e′ has neither a zero
nor a pole at Q, and so |φ(P )|v is bounded away from 0 and ∞ as P → Q. Hence as
P → Q, we have

log dv(P, t
′
Q)

log dv(P, tQ)
= 1 +

log |φ(P )|1/ee′

log dv(P, tQ)
→ 1

as P → Q.
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Proposition 9.7 Suppose C1/K and C2/K are curves, and that f : C1 → C2 is a
finite map defined over K. Let Q ∈ C1(Kv), and set ef (Q) to be the ramification
index of f at Q. Then

lim
P∈C1(Kv)
P→Q

log dv(f(P ), f(Q))

log dv(P,Q)
= ef (Q).

Proof. Let tQ ∈ Kv(C1) and tf(Q) ∈ Kv(C2) be uniformizers at Q and f(Q), respec-
tively. Then tf(Q) ◦ f = t

ef (Q)
Q φ, where φ ∈ Kv(C1) has neither a zero nor a pole at

Q. Thus |φ(P )|v is bounded away from 0 and ∞ as P → Q. Thus

log dv(f(P ), f(Q))

log dv(P,Q)
=

log |tf(Q)(f(P ))|v
log |tQ(P )|v

=
ef (Q) log |tQ(P )|v + log |φ(P )|v

log |tQ(P )|v
→ ef (Q)

as P → Q.

Theorem 9.8 Suppose C/K is a curve, f ∈ K(C) is a nonconstant function, and
Q ∈ C(K̄). Then

lim
P∈C(K)
P→Q

log dv(P,Q)

logHK(f(P ))
≥ −2.

[“P → Q” means P → Q with respect to the v-adic topology. If Q is not a v-adic
limit point of C(K), we define lim = 0.]

Proof. Without loss of generality we may assume f(Q) 6= ∞. (Replace f by 1/f if
necessary, and observe that HK

(
1

f(P )

)
= HK(f(P )).) Thus

dv(P,Q) = min{|f(P )− f(Q)|1/ev , 1},

115



where e = ordQ(f − f(Q)) ≥ 1. Thus

lim
P→Q

log dv(P,Q)

logHK(f(P ))
= lim

P→Q

log |f(P )− f(Q)|
e logHK(f(P ))

=
1

e
lim
P→Q

{
log{HK(f(P ))2 · |f(P )− f(Q)|v}

logHK(f(P ))
− τ
}
.

Roth’s Theorem (Theorem 9.4) implies that if τ = 2 + ε, then we have HK(f(P ))T ·
|f(P )− f(Q)|v ≥ 1 for all but finitely many P ∈ C(K). Hence

lim
P→Q

log dv(P,Q)

logHK(f(P ))
≥ −τ

e
=
−2 + ε

e
.

This implies the desired result since ε > 0 is arbitrary and e ≥ 1.

Theorem 9.9 (Siegel.) Let E/K be an elliptic curve with E(K) infinite. Suppose
f ∈ E(K) is a nonconstant even function, Q ∈ E(K̄), and v ∈MK . Then

lim
P∈E(K)
hf (P )→∞

log dv(P,Q)

hf (P )
= 0.

Proof. Let
L = lim

P∈E(K)
hf (P )→∞

log dv(P,Q)

hf (P )
.

Now L ≤ 0 since hf (P ) ≥ 0 and dv(P,Q) ≤ 1 for all P . Thus it suffices to prove
that L ≥ 0 to deduce that L = 0. Choose a sequence {Pi} ⊆ E(K) (Pi’s distinct)
such that limi→∞

log dv(Pi,Q)
hf (Pi)

= L. Choose m ∈ N large. Then since E(K)/mE(K) is
finite, some coset of E(K)/mE(K) contains infinitely many Pi. Thus passing to a
subsequence and relabeling, we have Pi = mP ′

i +R, where R ∈ E(K) is independent
of i and P ′

i ∈ E(K). Now

m2hf (P
′
i ) = hf (mP

′
i ) +O(1) = hf (Pi −R) +O(1) ≤ 2hf (Pi) +O(1), (†)

where the O(1) term is independent of i, and may be taken to be positive.
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First observe that if Pi is bounded away from Q (with respect to the v-adic topology),
then log dv(Pi, Q) is bounded, and so L = 0, and we’re done.

Otherwise, by passing to a subsequence, we may assume that Pi ∈ Q as i→∞. Then
mP ′

i → Q−R, so {P ′
i} has an mth root Q′ ∈ E(K̄), say, of Q−R as a limit point. So,

by passing to a subsequence again, we may assume that P ′
i → Q′, with Q = mQ′+R.

Now the map E → E given by P 7→ mP + R is unramified (Proposition 3.9(3))
everywhere. Thus Proposition 9.7 implies that

lim
i→∞

log dv(Pi, Q)

log dv(P ′
i , Q

′)
= 1. (‡)

Combining (†) and (‡) gives

L = lim
i→∞

log dv(Pi, Q)

hf (Pi)
≥ lim

i→∞

log dv(P
′
i , Q

′
i)

1
2
m2hf (P ′

i ) +O(1)
. (§)

Now Theorem 9.8 implies that

lim
i→∞

log dv(P
′
i , Q

′)

logHK(f(P ))
≥ −2,

i.e.
lim
i→∞

log dv(P
′
i , Q

′)

[K : Q]hf (P )
≥ −2. (∗)

Combining (§) and (∗) gives

L ≥ −4[K : Q]

m2 +O(1)
≥ −4[K : Q]

m2
.

Since m is arbitrary, it follows that L ≥ 0.

Theorem 9.10 Suppose E/K is an elliptic curve with Weierstraß coordinate func-
tions x and y. Let S be a finite set of places of K containing the infinite places of K.
Set oK,S := {x ∈ K | v(x) ≥ 0 for all v 6∈ S}. Then #{P ∈ E(K) | x(P ) ∈ oK,S} <
∞.
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Proof. We apply Theorem 9.9 with f = x. Suppose if possible that {Pi} is an infinite
sequence of distinct points in E(K) with x(Pi) ∈ oK,S for all i. Then

hx(Pi) =
1

[K : Q]

∑
v∈S

log(max{1, |x(Pi)|nv
v })

(since v 6∈ S implies that |x(Pi)|v ≤ 1). Hence, by passing to a subsequence if
necessary, we may assume that hx(Pi) ≤ |S| · log |x(Pi)|v for all i (note nv ≤ [K : Q]),
where v is a fixed absolute value. So |x(Pi)|v →∞ as i→∞ (there exist only finitely
many points of bounded height). The only pole of x is O, so dv(Pi, O)→ 0. x has a
pole of order 2 at O, so we can take dv(Pi, O) = min{|x(Pi)|−1/2

v , 1} as our distance
function. Thus for all i� 0, we have

− log dv(Pi, Q)

hx(Pi)
≥ 1

2|S|
,

which is a contradiction since Theorem 9.9 implies that the left side tends to 0 as
i→∞.

Corollary 9.11 Suppose that C/K is a curve of genus 1, and f ∈ K(C) is any
nonconstant function. Then {{P ∈ C(K) | f(P ) ∈ oK,S} <∞.

Proof. Without loss of generality we may extend K and enlarge S. Thus we may
assume C contains a pole Q of f . So (C,Q) is an elliptic curve over K. Let x and y be
Weierstraß coordinates for (C,Q) with y2 = x3 +Ax+B. Now [K(x, y) : K(x)] = 2,
and if f ∈ K(x, y) = K(C), then

f(x, y) =
φ(x) + ψ(x)y

η(x)
,

where φ, ψ, η ∈ K[x]. Also ordQ(x) = −2, ordQ(y) = −3, and ordQ(f) < 0, so

2 deg(η) < max{2 deg φ, 2 degψ + 3}. (∗)

We claim that x satisfies a monic polynomial over K[f ]:

(fη(x)− φ(x))2 = (ψ(x)− y)2 = ψ(x)2(x3 + Ax+B).
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Viewed as a polynomial in f , the highest power of x will come from one of the
terms f 2η(x)2, φ(x)2, or ψ(x)2x3. Now (∗) implies that deg(f 2η(x)2) < deg(φ(x)2) or
deg(ψ(x)2x3), and deg(φ(x)2) 6= deg(ψ(x)2x3). This implies that the leading terms
of φ(x)2 and ψ(x)2x3 cannot cancel. So, clearing denominators, we have

anx
n + an−1(f)xn−1 + · · ·+ a1(f)x+ a0(f) = 0,

with an ∈ oK,S and ai(f) ∈ oK,S[f ] for o ≤ i ≤ n − 1. Without loss of generality
we may assume an ∈ o×K,S (by enlarging S if necessary). Suppose P ∈ C(K) satisfies
f(P ) ∈ oK,S. Then P is not a pole of f , and

anx(P )n + an−1(f(P ))x(P )n−1 + · · ·+ a1(f(P ))x(P ) + a0(f(P )) = 0,

so x(P ) is integral over oK,S. Thus x(P ) ∈ K and oK,S is integrally closed in K, so
x(P ) ∈ oK,S. Thus

{P ∈ C(K) | f(P ) ∈ oK,S} ⊆ {P ∈ C(K) | x(P ) ∈ oK,S},

and now the result follows from Theorem 9.10.

Example. Consider C : y2 = x3 +Ax+B, A,B ∈ Z, 4A3 +27B2 6= 0. Theorem 9.10
implies that this equation has only finitely many solutions with x, y ∈ Z. What does
Theorem 9.9 (i.e. the strong form of Siegel’s Theorem) give us? In Theorem 9.9, we
take Q = O, f = x, and v the infinite place of Q. Suppose that C(Q) is infinite, with
{Pi} ⊆ C(Q) with h(Pi) ≤ h(Pi+1). Write x(Pi) = ai

bi
∈ Q, fractions in lowest terms.

Recall that x has a pole of order 2 at O, so 1/x has a zero of order 2 at O. Thus

dv(Pi, O) =
1

2
log min

{∣∣∣∣ biai
∣∣∣∣ , 1}

and
hx(Pi) = log max{|ai|, |bi|}.

Now Theorem 9.9 implies that

lim
i→∞

min
{

log
∣∣∣ biai

∣∣∣ , 0}
max{log |ai|, log |bi|

= 0. (∗)

Now let Q1 ∈ C(Q) be any point with x(Q1) = 0. Then

log dv(Pi, Q1) = log min

{∣∣∣∣aibi
∣∣∣∣ , 1} ,
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and now Theorem 9.9 gives

lim
i→∞

min
{

log
∣∣∣ai

bi

∣∣∣ , 0}
max{log |ai|, log |bi|

= 0. (∗∗)

(∗) and (∗∗) imply that

lim
i→∞

| log |ai| − log |bi||
max{log |ai|, log |bi|}

= 0,

so
lim
i→∞

log |ai|
log |bi|

= 1.

The upshot of all this is that the numerators and denominators of the points Pi tend
to have about the same number of digits as i→∞.

Theorem 9.12 Let S be a finite set of places of K, and suppose a, b ∈ K×. Then
the equation

ax+ by = 1 (†)

has only finitely many solutions x, y with x, y ∈ o×K,S.

Proof. Choose m ∈ N to be large. Dirichlet’s unit theorem implies that o×K,S/o
×m
K,S

is finite. Let c1, . . . , cr ∈ o×K,S be a set of coset representatives. Then if x, y ∈ o×K,S
is a solution to (†), we may write x = ciX

m, y = cjY
m (some X, Y ∈ o×K,S), and so

(X, Y ) is a solution of aciXm + bcjY
m = 1. Thus it suffices to prove that for any

α, β ∈ K×, the equation
αXm + βY m = 1 (§)

admits only finitely many solutions with X,Y ∈ o×K,S. Now appeal to the fact that
when m is large, the curve defined by (§) has genus greater than 1, and use Siegel’s
Theorem for curves of large genus.

This proof is ineffective.
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Theorem 9.13 (Siegel.) Suppose f(x) ∈ K[x] is of degree d ≥ 3 and that f(x) has
distinct roots in K̄. Then the equation y2 = f(x) has only finitely many solutions in
oK,S.

Proof. We are certainly at liberty to enlarge S and make a finite extension of K. So
we may assume f(x) = a(x− α1) · · · (x− αd), xi ∈ K, with

(i) a ∈ o×K,S.

(ii) αi − αj ∈ o×K,S for i 6= j.

(iii) oK,S is a PID.

Thus suppose that x, y ∈ oK,S are such that y2 = f(x), and let p be a prime ideal
of oK,S. (ii) implies that p divides at most one x − αi (since if p divides x − αi and
x − αj, then p | (αi − αj), which is a contradiction). (i) implies that p - a. Thus
y2 = a(x − α1) · · · (x − αi) implies that ordp(x − αi) is even. So (x − αi)oK,S = a2,
say, but since oK,S is a PID, it follows that there exists zi ∈ oK,S and bi ∈ o×K,S such

that x− αi = biz
2
i . Set L := K(

√
o×K,S).

L T

K S

Then bi = β2
i , βi ∈ oL,T , whence x− αi = (βizi)

2. Therefore, taking the difference of
any two of these equations gives:

(x− αi)− (x− αj) = αj − αi = (βizi − βjzj)(βizi + βjzj).

Now αj − αi ∈ o×L,T and βizi ± βjzj ∈ oL,T . It therefore follows that in fact
βizi ± βjzj ∈ o×L,T for all i 6= j.

We appeal to Siegel’s Identity:

β1z1 ± β2z2

β1z1 − β3z3

∓ β2z2 ± β3z3

β1z1 − β3z3

= 1.

Thus Theorem 9.12 implies that there exist only finitely many possibilities for β1z1+β2z2
β1z1−β3z3

and β1z1−β2z2
β1z1−β3z3

, so there exist only finitely many possibilities for α2−α1

(β1z1−β3z3)2
(multiplying
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the above numbers together), so there exist only finite many possibilities for β1z1 −
β3z3, so there exist only finitely many possibilities for

β1z1 =
1

2

[
(β1z1 − β3z3) +

α3 − α1

β1z1 − β3z3

]
,

so there exist only finitely many possibilities for x = α1 + (β1z1)
2, so there exist only

finitely many possibilities for y.

9.1 Effectivity
Theorem 9.14 (Gelfond-Schneider.) Suppose α, β ∈ Q̄ with α 6= 0, 1 and β 6∈ Q.
Then αβ is transcendental.

Aliter. If α1, α2 ∈ Q̄× and if logα1 and logα2 are linearly independent over Q, then
they are linearly independent over Q̄, i.e. logα1

logα2
is either rational or transcendental.

Theorem 9.15 (Baker.) Suppose that α1, . . . , αn ∈ K× and β1, . . . , βn ∈ K. For
any constant κ, set

τ(κ) := τ(κ;α1, . . . , αn; β1, . . . , βn) = h([1, β1, . . . , βn])h([1, α1, . . . , αn])
κ.

Suppose that β1 logα1 + · · ·+ βn logαn 6= 0. Then there exist effectively computable
constants C(n, [K : Q]) and κ(n, [K : Q]) > 0 such that

|β1 logα1 + · · ·+ βn logαn| > C−τ(κ).

(K ↪→ C with absolute value | · |.)

Lemma 9.16 Let V be a finite dimensional R-vector space. Suppose e = (e1, . . . , en)
is a basis of V , and define

‖x‖e =

∥∥∥∥∥
n∑
i=1

xiei

∥∥∥∥∥
e

(sup norm). Suppose f = (f1, . . . , fn) is another basis of V . Then there exist constants
c1, c2 > 0 (depending on e and f) such that for all x ∈ V ,

c1‖x‖e ≤ ‖x‖f ≤ c2‖x‖e.
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Proof. Let A = (aij) be such that ei =
∑n

j=1 aijfj (change of basis matrix), and set
‖A‖ = maxi,j |aij|. Then if x =

∑n
i=1 xiei ∈ V , we have x =

∑n
i,j=1 xiaijfj, whence

‖x‖f = max
j

{∣∣∣∣∣∑
i

xiaij

∣∣∣∣∣
}
≤ nmax

i,j
{|aij|} ·max

i
{|xi|} = n‖A‖ · ‖x‖e,

and the other equality follows by symmetry.

Application. Let S be a finite set of places of K. Assume S contains the infinite
places, s := |S|, α1, . . . , αs−1 form a basis of o×K,S/(o

×
K,S)tors. So, if α ∈ o×K,S, then

α = ζαm1
1 · · ·α

ms−1

s−1 , where ζ is a root of unity. Define m(α) := maxi{|mi|}.

Lemma 9.17 There exist constants c1, c2 > 0 (depending only on K and S) such
that for all α ∈ o×K,S, we have c1h(α) ≤ m(α) ≤ c2h(α).

Proof. Suppose S = {v1, . . . , vs}, and set ni := nvi
= [Kvi

: Qvi
]. Define ρs : o×K,S →

Rs by α 7→ (n1v1(α), . . . , nsvs(α)). Then Im(ρs) ⊆ H = {x1+· · ·+xs = 0} and Im(ρs)
spans H. Let ‖ · ‖1 be the sup norm on Rs with respect to the standard basis and
‖ · ‖2 the sup norm on Rs with respect to the basis {ρs(α1), . . . , ρs(αs−1), (1, . . . , 1)}.
Lemma 9.16 implies that there exist constants c1, c2 > 0 such that

c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1 for all x ∈ Rs. (∗)

Now if α ∈ o×K,S with

ρs(α) =
n∑
i=1

miρs(αi),

then
‖ρs(α)‖2 = max{|mi|} = m(α),

‖ρs(α)‖1 = max{ni|vi(α)|},

and
hx(α) =

∑
i

max{0,−nivi(α)}.
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• If x = (x1, . . . , xs) ∈ H, then

h(x) =
∑
i

max{0,−xi} ≤
∑
i

|xi| ≤ s‖x‖1.

• xi = max{0, xi} −max{0,−xi}.

Thus summing, and using
∑
xi = 0, gives 0 = h(−x) − h(x). Thus h(x) = h(−x).

So

2h(x) = h(x) + h(−x)

=
∑
i

(max{0,−xi}+ max{0, xi})

=
∑
i

|xi|

≥ max{|xi|}
= ‖x‖1.

Thus
1

2
‖x‖1 ≤ h(x) ≤ s‖x‖1. (∗∗)

Now combining (∗) and (∗∗) gives us what we want.

Theorem 9.18 Suppose a, b ∈ K×. Then there exists an effectively computable
constant C = C(K,S, a, b) such that any solution α, β ∈ o×K,S of the S-unit equation
aα+ bβ = 1 satisfies H(α) < C.

Proof. Set s = |S|. Suppose α, β is a solution, and let v ∈ S be such that |α|v is
maximal. Then

|α|[K:Q]
v ≥

∏
w∈S

max{1, |α|nw
w } = HK(α), |αv ≥ HK(α)1/s. (1)

We make the simplifying assumption that v is archimedean. Now apply the Mean
Value Theorem to log x to obtain∣∣∣∣ log x− log y

x− y

∣∣∣∣
v

≤ 1

min{|x|v, |y|v}
.
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Set x = aα and y = −bβ. Then x− y = 1, and so

| log(aα)− log(bβ)|v ≤ min{|aα|v, |aα− 1|v}−1 ≤ 2(|α| ·H(α)1/s)−1 (2)

from (1), and assuming |α| > 2|a| (otherwise we’d have a good bound on H(α)).
Choose a basis α1, . . . , αs−1 of o×K,S/(o

×
K,S)tors and write α = ζαm1

1 · · ·α
ms−1

s−1 and β =

ζ ′α
m′1
1 · · ·α

m′s−1

s−1 (where ζ and ζ ′ are roots of unity). Substituting into (2) yields∣∣∣∣∣∑
i

(mi −m′
i) logαi + log

(
aζ

bζ ′

)∣∣∣∣∣ ≤ c1H(α)−1/s, (3)

where c1 is an effectively computable constant depending only upon K, S, a, and b.
Next observe that since aα+ bβ = 1,

h(α) = h

(
1

a
− b

a
β

)
≤ h(β) + C,

so |h(α)− h(β)| ≤ c2, and we apply Lemma 9.17 to both α and β to obtain

c3m(α) ≤ m(β) ≤ c4m(α).

This in turn implies

|mi −m′
i| ≤ m(α) +m(β) ≤ c5h(α). (§)

Set qi := mi −m′
i and γ := aζ/bζ ′. Then (3) gives

|q1 logα1 + · · ·+ qs−1 logαs−1 + log γ| < c1H(α)−1/s, (4)

where α1, . . . , αs−1 and γ are fixed, and qi ∈ N satisfies |qi| ≤ c5h(α). Now apply
Theorem 9.15 (i.e. Baker’s Theorem). This implies that

|q1 logα1 + · · ·+ qs−1 logαs−1 + log γ| ≥ c−τ6 , (5)

where τ = h([1, q1, . . . , qs−1])h([1, α1, . . . , αs−1, γ])
κ, where κ is a constant depending

only upon K and s. Now (§) implies that

h([1, q1, . . . , qs−1]) = log max{1, |q1|, . . . , |qs−1|} ≤ log(c5 − h(α)). (6)

Thus (4), (5), and (6) give

c
− log(c5h(α))
7 ≤ c1H(α)−1/s,
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so H(α) ≤ c8h(α)c9 , i.e. H(α) ≤ c10 logH(α), so we have a bound on H(α).

Theorem 9.19 For any a, b ∈ K×, the equation

aXm + bY m = 1 (§)

has only finitely many solutions X, Y ∈ o×K,S if m is large.

Proof. Suppose (§) has infinitely many solutions X, Y ∈ o×K,S. The idea is to show
that X/Y is too good an approximation to (−b/a)1/m. Since S is finite, there exists
some w ∈ S such that (§) has infinitely many solutions X, Y ∈ o×K,S such that

|Y |nw
w = max{|Y |nv

v | v ∈ S}.

Fix an mth root α of −b/a. Then

1

aY m
=
Xm

Y m
+
b

a
=
Xm

Y m
− αm =

∏
ζ∈µm

(
X

Y
− ζα

)
.

If Y is “large,” then at least one of X
Y
− ζα is “small.”

We claim that “only one of X
Y
− ζα can be small.” For suppose ζ, ζ ′ ∈ µm are distinct.

Then ∣∣∣∣XY − ζα
∣∣∣∣
w

+

∣∣∣∣XY − ζ ′α
∣∣∣∣
w

≥ ‖ζ ′α− ζα|w ≥ C1(K,S,m). (†)

Therefore

1

|aY m|w
=
∏
ζ∈µm

∣∣∣∣XY − ζα
∣∣∣∣
w

≥
(

min
ζ∈µm

∣∣∣∣XY − ζα
∣∣∣∣
w

)
·
(
C1

2

)m−1

(since (†) implies that all but one of the terms in the product must be at least C1/2).

A consequence is that

1

|Y m|nw
w

≥ C2(K,S,m) min
ζ∈µm

∣∣∣∣XY − ζα
∣∣∣∣nw

w

.
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Since µm is finite, there is some ξ ∈ µm such that there exist infinitely many solutions
X, Y ∈ o×K,S of (§) such that

1

|Y m|nw
w

≥ C2

∣∣∣∣XY − ξα
∣∣∣∣n2

w

(‡)

(i.e. X/Y is a good approximation to ξα).

Recall that w was chosen to maximize |Y |nw
w . Hence (since |Y |v = 1 for all v 6∈ S)

|Y |nw
w = max

v∈S
|Y |nv

v

≥

(∏
v∈S

|Y |nv
v

)1/s

(s := #S)

=

(∏
all v

|Y |nv
v

)1/s

= HK(Y )1/s (§§)

Thus we can compute

HK

(
Xm

Y m

)
= HK

(
1

aY m
− b

a

)
≤ 2[K:Q]HK

(
1

aY m

)
HK

(
b

a

)
≤ 2[K:Q]HK

(
1

Y m

)
HK

(
1

a

)
HK

(
b

a

)
.

Taking mth roots yields

HK

(
X

Y

)
≤ C3(K,S,m) ·HK

(
1

Y

)
= C3(K,S,m)HK(Y ).

Now applying (§§) gives

|Y |nw
w ≥ C4(K,S,m)HK

(
X

Y

)1/s

.

Substituting this into (‡) yields

C5

HK(X/Y )m/s
≥
∣∣∣∣XY − ξα

∣∣∣∣nw

w

,
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and Roth’s Theorem implies that this is only satisfied by finitely many X, Y if m is
large.

Theorem 9.20 (Shafarevich.) Let K be a number field, and let S be a finite set of
places of K, with S∞ ⊆ S. Then, up to isomorphism over K, there are only finitely
many elliptic curves E/K that have good reduction away from S (i.e. good reduction
at all primes not in S).

Proof. Without loss of generality, we may assume

• S contains all primes above 2 and 3.

• Cl(oK,S) = 1.

Then we may write E : y2 = x3+Ax+B with A,B ∈ oK,S and ∆ = −16(4A3+27B2).
∆oK,S = DE/KoK,S, where DE/K is the minimal discriminant of E/K, so ∆ ∈ o×K,S
since E has good reduction away from S. Now suppose E1/K,E2/K, . . . is a sequence
of elliptic curves, and that Ei/K has good reduction away from S. Let

Ei : y2 = x3 + Aix+Bi, Ai, Bi ∈ oK,S, ∆i = −16(4A3
i + 27B2

i ),

∆ioK,S = DEi/KoK,S, ∆i ∈ o×K,S. (†)

By passing to a subsequence if necessary, we may assume that all of the ∆i have the
same image in the (finite!) group o×K,S/(o

×
K,S)

12, i.e. we may write

∆i = CD12
i , C fixed, Di ∈ o×K,S. (‡)

Now (†) and (‡) imply CD12
i = −16(4A3

i + 27B2
i ), so

C =

(
−4Ai
D4
i

)3

− 3

(
12Bi

D6

)2

,

so

27C =

(
−12Ai
D4
i

)3

−
(

108Bi

D6
i

)2

= X3 − Y 2,

so for each i, the point
(
−12Ai

D4
i
, 108Bi

D6
i

)
is an S-integral point on the curve Y 2 =

X3−27C. Theorem 9.13 (Siegel’s Theorem) implies that there are only finitely many
such points, so there are only finitely many possibilities for Ai/D4

i and Bi/D
6
i . But if

Ai

D4
i

=
Aj

D4
j

and Bi

D6
i

=
Bj

D6
j
, then we have Ei

∼→ Ej given by x 7→
(
Di

Dj

)2

x′, y 7→
(
Di

Dj

)3

y′.
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So the sequence contains only finitely many K-isomorphism classes of elliptic curves.

Corollary 9.21 Let E/K be a fixed elliptic curve. Then there are only finitely many
elliptic curves E ′/K that are K-isogenous to E.

Proof. Corollary 6.38 implies that if E and E ′ are K-isogenous, then they have the
same set of primes of bad reduction. The result now follows from Theorem 9.20.

Corollary 9.22 (Serre.) Suppose that E/K is an elliptic curve without complex mul-
tiplication. Then for all but finitely many primes `, the group E[`] has no nontrivial
Gal(K̄/K)-invariant subgroups, i.e. the representation ρ` : Gal(K̄/K)→ Aut(E[`]) '
GL2(F`) is irreducible.

Proof. If Φ` ⊂ E[`] is a nontrivial Gal(K̄/K)-invariant subgroup, then Φ` ' Z/`Z,
since E[`] ' (Z/`Z)2. Theorem 3.11 implies that there exists an elliptic curve E`/K
and a K-isogeny ϕ` : E → E` such that ker(ϕ`) = Φ`. Corollary 9.21 implies that
the curves E` fall into finitely many isomorphism classes since each E` is isomorphic
to E. Suppose then that E` ' E`′ , and consider the following sequence of maps:

E
ϕ`→ E` ' E`′

ϕ̂`′

E .

This is an element of End(E) of degree (degϕ`)(deg ϕ̂`′) = ``′. Since E does not have
complex multiplication, End(E) ' Z, every element of End(E) has degree n2, and
so it follows that ` = `′. So if ` 6= `′, E` 6' E`′ , and therefore there are only finitely
many primes for which Φ` can exist.

Conjecture 9.23 (Frey.) Let E/K be an elliptic curve. Then there are only finitely
many pairs (Ei, pi) consisting of

• An elliptic curve Ei/K which is not isogenous to E.

• A prime pi > 5 such that E[pi] ' Ei[pi] as Gal(K̄/K)-modules.
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Definition 9.24 (Darmon.) Say that an integer n has the isogeny property (rela-
tive to a number field K) if the implication

E[n] ' E ′[n] as Gal(K̄/K)-modules ⇒ E is isogenous to E ′ (∗)

holds for all elliptic curves E,E ′/K.

Conjecture 9.25 (Darmon.) Given any global field K, there exists a constant MK

such that all n ≥MK have the isogeny property.

Say that n satisfies the weak isogeny property if (∗) holds with at most finitely
many exceptions.

Conjecture 9.26 (Darmon.) There exists an absolute constant M such that all
n ≥M have the weak isogeny property over all number fields K.
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Chapter 10

Geometric Interpretation of
Cohomology Groups

Basic Idea. Let E/K be an elliptic curve (K a number field, say). We have an exact
sequence

0→ E(K)

nE(K)
→ H1(K,En)→ H1(K,E)n → 0.

We will try to understand these cohomology groups geometrically.

To a genus one curve C/K, we associate an elliptic curve E/K = Jac(C), the Jaco-
bian of C.

There is a bijection X(E/K)↔ {curves C/K of genus 1 such that Jac(C) = E, and
the Hasse principle fails for C/K}.

General Principle. H1(K, ?) ↔ ‘Objects over K that become isomorphic over K̄
to a fixed object with automorphism group “?”.’

Definition 10.1 Let G be an abelian group. A (right) G-set P is called a G-torsor
(or a principal homogeneous space for G) if P 6= ∅ and the map P ×G→ P ×P
given by (p, g) 7→ (p, p + g) is bijective (i.e. for every pair P1, P2 ∈ P , there exists a
unique g ∈ G such that P1 + g = P2).
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Example. The addition map G×G→ G makes G a G-torsor (the trivial G-torsor).

Definition 10.2 A morphism ϕ : P → P ′ of G-torsors is just a map of G-sets.

Some basic properties:

(a) For any points π ∈ P, π′ ∈ P ′, there is a unique morphism P → P ′ such that
ϕ(π) = π′.

(b) Every morphism P → P ′ is an isomorphism.

(c) For any point π ∈ P , there is a unique morphism G → P (of G-torsors) such
that 0 7→ π.

(d) Any element g ∈ G defines an automorphism π 7→ π + g of P . Every automor-
phism of P is one of this form, for some g ∈ G.

Consequence. Aut(P ) = G for any G-torsor P .

Definition 10.3 Let E/K be an elliptic curve. An E-torsor is a curve C/K together
with a right action of E given by a regular map C×E → C given by (w,Q) 7→ w+Q
such that the map C ×E → C ×C given by (w,Q) 7→ (w,w+Q) is an isomorphism
of algebraic varieties.

Consequence. For any extension L/K, C(L) = ∅ or C(L) is an E(L)-torsor (as
sets).

A morphism of E-torsors is a regular map ϕ : C → C ′ such that the following
diagram commutes:

C × E //

ϕ×idE

��

C

ϕ

��
C ′ × E // C ′
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All the statements made following Definition 10.2 hold in this setting.

Remark. If C is an E-torsor and w ∈ C(K) is any point, then there is a unique
morphism E → C (of E-torsors) such that O 7→ w, and this morphism is an isomor-
phism. So C is trivial iff C(K) 6= ∅.

10.1 Classifying E-Torsors
Suppose that C is an E-torsor over K, and choose a point w0 ∈ C(K̄). For any
σ ∈ Gal(K̄/K), we have σ(w0) = w0 + f(σ) (f(σ) ∈ E(K̄) unique). Then

(στ)(w0) = σ(τ(w0)) = σ(w0 + f(τ)) = w0 + f(σ) + σf(τ),

and (στ)(w0) = w0 + f(στ) (from the definition of f). So

f(στ) = f(σ) + σf(τ),

i.e. f : Gal(K̄/K)→ E(K̄) is a 1-cocycle. w0 has coordinates in a finite extension of
K, so f is continuous.

Suppose we choose w1 ∈ C(K̄). Then w1 = w0 + P for some P ∈ E(K̄). Thus

σ(w1) = σ(w0 + P ) = w0 + f(σ) + σ(P ) = w1 + f(σ) + σ(P )− P,

so f and f1 differ by a coboundary, so the cohomology class of f depends only upon
C.

Suppose [f ] ∈ H1(K,E) is zero. Then f(σ) = σ(P )− P for some P ∈ E(K̄). Then

σ(w0 − P ) = σ(w0)− σ(P ) = w0 + σ(P )− P − σ(P ) = w0 − P,

so w0 − P ∈ C(K), so C is a trivial E-torsor.

Theorem 10.4 The map {E-torsors}
' → H1(K,E) given by C 7→ [f ] is a bijection,

sending the trivial E-torsor to the zero element.
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Proof. We’ll come back to this later, if ever.

Remark. Set WC(E/K) to be equal to the set of isomorphism classes of E-torsors
over K. The group structure on WC(E/K) may be described concretely as follows:
Suppose C,C ′ ∈ WC(E/K). Define C∧C ′ to be equal to the quotient by the diagonal
action of E. So

(C ∧ C ′)(K̄) =
C(K̄)× C ′(K̄)

∼
,

where (w,w′) ∼ (w + Q,w′ + Q), Q ∈ E(K̄). Then C ∧ C ′ represents C + C ′ in
WC(E/K).

10.2 Geometric Interpretation of H1(K,En)

Definition 10.5 An n-covering is a pair (C, α) consisting of

• An E-torsor C.

• A regular map α : C → E defined over K such that for some w1 ∈ C(K̄) we
have α(w1 + P ) = [n]P for all P ∈ E(K̄).

A morphism (C, α)→ (C ′, α′) of n-coverings is a morphism ϕ : C → C ′ of E-torsors
such that α = α′ϕ.

For σ ∈ Gal(K̄/K), we have σ(w1) = w1 + f(σ), f(σ) ∈ E(K̄).

Check that f is an E(K̄)-valued 1-cocycle.

We have α(σ(w1)) = α(w1 + f(σ)) = [n]f(σ) and α(σ(w1)) = σ(α(w1)) = σ(α(w1 +
O)) = O, so [n]f(σ) = O, i.e. f(σ) ∈ En. w1 is unique up to translation by Q ∈ En,
so [f ] ∈ H1(K,En) is independent of w1.
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Theorem 10.6 The map {n-coverings}/ '→ H1(K,En) given by (C, α) 7→ [f ] is a
bijection.

Proof. Write WC(En/K) for the set of n-coverings of E modulo isomorphism, and
consider the forgetful map WC(En/K)→ WC(E/K) given by (C, α) 7→ C.

Exercise.

(a) Show that this map defines a surjection

WC(En/K)→ WC(E/K)n. (†)

(b) Show that the fibers of (†) are E(K)/nE(K)-torsors.

For example, if C is trivial, then there exists w0 ∈ C(K) with α(w0) ∈ E(K). If w1 ∈
C(K), then w1 = w0 +P for some P ∈ E(K), so α(w1) = α(w0 +P ) = α(w0)+ [n]P ,
so α(w0) ∈ E(K)/nE(K) is well-defined.

Now consider the following diagram:

WC(En/K)
β //

α

��

WC(E/K)n

∼
��

0 // E(K)
nE(K)

// H1(K,En)
γ // H1(K,E)n // 0.

The diagram commutes, so α maps the fibers of β into the fibers of γ. These fibers
are E(K)/nE(K)-torsors, so α is bijective on each fiber, so α is bijective on the entire
set.

10.3 Twisting
Problem. Given an elliptic curve E/K, find all elliptic curves E ′/K that become
isomorphic to E over K̄. (E ′ is called a twist of E.)
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Example. Consider the elliptic curves E : y2 = f(x), Ed : dy2 = f(x). The change
of variables x 7→ x, y 7→ y

√
d show that E ' Ed over K(

√
d).

In order to apply cohomology, we need to understand Aut(E,O).

Proposition 10.7 We have

AutK(E,O) =


µ6(K) if j(E) = 0,

µ4(K) if j(E) = 1728,

µ2(K) if j(E) 6= 0 or 1728.

Proof. See Silverman III, §10.

Fix E/K, and let E ′/K be an elliptic curve such that there is an isomorphism ϕ :
E

∼→ E ′ over K̄ If σ ∈ Gal(K̄/K), then σϕ := σϕσ−1 : E
∼→ E ′ is also an isomorphism

over K̄. We have σϕ = ϕ ◦ α(σ), α(σ) ∈ AutK̄(E,O). Observe that

(στ)ϕ = σ(τϕ) = σ(ϕ ◦ α(τ)) = ϕ ◦ α(σ) · σ(ατ),

whence α(στ) = α(σ)σ(α(τ)), i.e. α : Gal(K̄/K)→ AutK̄(E,O) is a 1-cocycle.

Check that choosing a different ϕ replaces α by its composite with a coboundary.

Theorem 10.8 The map

{E ′/K such that E 'K̄ E ′}
'

→ H1(K,AutK̄(E,O))

is a bijection.
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Corollary 10.9 If j(E) 6= 0 or 1728, then every twist of E is of the form Ed as in
the example above.

Proof. AutK̄(E,O) = {±1} = µ2, and H1(K,µ2) ' K×/(K×)2 under the corre-
spondence in Theorem 10.8 given by Ed 7→ d (mod K×2).

Remark. Set Aut(E) to be the group of all automorphisms of E (not necessarily
preserving O). Then E(K) ↪→ Aut(E), Q 7→ τQ (translation by Q).

Claim. Aut(E) = E(K) o Aut(E,O), i.e.

(a) E(K) C Aut(E),

(b) E(K) ∩ Aut(E,O) = {0},

(c) Aut(E) = E(K) · Aut(E,O).

Proof.

(a) Suppose Q ∈ E(K) and γ ∈ Aut(E,O). Then for any P ∈ E(K̄),

(α ◦ τQ ◦ α−1)(P ) = α(α−1(P ) +Q) = P + α(Q) = τα(Q)(P ),

and so E(K) C Aut(E).

(b) Clear.

(c) Let γ ∈ Aut(E), and set γ(O) = Q. Then we have γ ◦ τQ ◦ (τ−Q ◦ γ) = γ, and
τ−Q ◦ γ ∈ Aut(E,O).

Theorem 10.10 Let C/K be a nonsingular projective curve of genus 1. Then there
exists an elliptic curve E0/K such that C is an E0-torsor. The curve E0 is unique up
to K-isomorphism.
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Proof. (Sketch.) There exists an isomorphism ϕ : C
∼→ E over K̄, where E/K̄

is an elliptic curve E : y2 = x3 + ax + b, a, b ∈ K̄, ∆ = 4a3 + 27b2 6= 0. For
any σ ∈ Gal(K̄/K), we have σϕ : σC = C

∼→ σE, so E ' C = σ(C) ' σ(E),
so j(E) = j(σ(E)) = σ(j(E)), so j(E) ∈ K. Choose a curve E0/K such that
j(E0) = j(E). (Such a curve certainly exists — see Theorem 4.13.)

The problem is that E0 might be the wrong curve. We fix this by twisting. Choose
an isomorphism ψ : E0

∼→ C over K̄. For σ ∈ Gal(K̄/K), let

E0
ψ

∼
// C

σ
∼
// σ(C) = C

be ψ ◦ α(σ), where α(σ) ∈ AutK̄(E0). Then σ 7→ α(σ) is an AutK̄(E0)-valued 1-
cocycle of Gal(K̄/K). This gives us some [α] ∈ H1(K,AutK̄(E0)). The Remark
implies that there is an exact sequence

1→ E0(K̄)→ AutK̄(E0)→ AutK̄(E,O)→ 1,

so
H1(K,E0)→ H1(K,AutK̄(E0))→ H1(K,AutK̄(E,O))

is exact, where the last map is defined by [α] 7→ [̃α]. If [̃α] = 0, then [α] ∈ H1(K,E0),
and C is an E0-torsor. If [̃α] 6= 0, we can twist E0 by [̃α] to obtain a new curve E1.
Check that [α] ∈ H1(K,E1), so C is an E1 torsor.

Remark. AutK̄(E) is noncommutative in general.

10.4 H1(G,M) for M Noncommutative
A 1-cocycle is a map f : G → M such that f(στ) = f(σ) · σ(f(τ)) for all σ, τ ∈ G.
Say that two 1-cocycles f and g are equivalent if there exists an m ∈ M such that
g(σ) = m−1 · f(σ) · σ(m). Define H1(G,M) to be the set of equivalence classes of
1-cocycles. This is a pointed set, with distinguished element σ 7→ 1.
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