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0.1 Introduction

These notes are based on a graduate course on elliptic curves I took from Pro-
fessor Adebisi Agboola in the Winter and Spring of 2007. The textbooks were
The Arithmetic of Elliptic Curves and Advanced Topics in the Arithmetic of El-
liptic Curves, both by Joseph Silverman. Other recommended books were Rational
Points on Elliptic Curves by Joseph Silverman and John Tate, Elliptic Curves by
Anthony Knapp, Elliptic Functions by Serge Lang, Introduction to Arithmetic The-
ory of Automorphic Functions by Goro Shimura, FElliptic Curves by James Milne
(available at http://www.jmilne.org/math/CourseNotes/math679.pdf), and Ra-
tional Points on Modular Elliptic Curves by Henri Darmon (available at http://www.
math.mcgill.ca/darmon/pub/Articles/Research/36.NSF-CBMS/chapter.ps).



Chapter 1

A Crash Course on Varieties

K is a perfect field, and K an algebraic closure of K.

Definition 1.1 (Affine n-space) A" = A"(K) = {(z1,...,2,) :2; € K,1 <i < n}.
A"(K) ={(xy1,...,2,) 1 2; € K}.

Write K[X] = K[X,...,X,], and suppose that I is an ideal in K[X].
Hilbert Basis Theorem. [ is finitely generated.

Definition 1.2 An affine algebraic set is any set of the form V; = {P € A™ :
f(P) =0 for all f € I}. If V is any algebraic set, then we define I(V) := {f €
K[X]: f(P)=0forall P €V} — the ideal of V. V(K) := V N A"(K) — the set
of K-rational points of V.

We say that V' is defined over K if I(V) is generated by polynomials in K[X]. So
we see that if V' is defined over K with fi,..., f,, € K[X] generators of I(V'), then

V(IK)={z= (21,...,2,) € A"K) : fi(z) =+ = f(z) =0}

Examples.

(a) V:X"4+Y" =1 (n>2). Wiles showed that V(Q) is finite.



(b) V:Y?=X3%—-2 V(Q) is infinite. [Fermat showed that V(Z) = {(3,+5)}]

Definition 1.3 Say that an affine algebraic set is an affine algebraic variety if
I(V) is a prime ideal in K[X].

Definition 1.4 Suppose that V' is an affine algebraic variety defined over K. Set

I(V/K) == I(V)NK[X]. K[V]:= ;5% is the affine coordinate ring of V/K — this

is an integral domain. K (V), the quotient field of K[V], is the function field of
V/K. Define K[V] and K (V) similarly. Each element f € K[V] induces a function

f:V—-K.
Definition 1.5 The dimension of a variety V is dim(V) := tr deg(K(V)/K).

Example. K(A") = K(X1,...,X,), so dim(A") = n.

1.1 Smoothness

Definition 1.6 Suppose that V' C A" is a variety, and P € V. Let fi, ..., f, € K[X]
be a set of generators of I(V'). Say that V' is smooth at P (or nonsingular at P)

if the matrix of
L(P
((%Uj( ))1<i<m

155<n

has rank n — dim(V).

Example. If V' is given by a single nonconstant polynomial equation f(X,...,X,) =
0, then dim(V) =n — 1. So P € V is singular iff
of of
P)=...—
0X1 (P) 00X,

(P) =0.



Alternatively, set Mp := {f € K[V] : f(P) = 0}. Then Mp is a maximal ideal of
K[V, for there is an isomorphism
K[V]

5K
Mp

given by f — f(P). Then P is nonsingular iff dimg(Mp/M3) = dim(V).

Example. Let V; : Y5 = X* — X and V5 : Y* = X3 + X? and P = (0,0). Then
Mp is generated by X and Y'; M3 is generated by X2, Y2, and XY. For V;, we have
X =Y5-X°=0 (mod M3), so dimg(Mp/M2%) = 1, and V; is smooth at P. For V5,
there are no nontrivial relations between X and Y modulo M2, so dimgz Mp/M3 = 2,
so V5 is singular at P.

Definition 1.7 The local ring K[V]p of V' at P is the localization of K[V] at Mp;
le. K[V]p={F e K(V): F= f/gwith f,g € K[V] and g(P) # 0}.

1.2 Projective Varieties

Definition 1.8 (Projective n-space) P™ or P"(K) is the set of all (n + 1)-tuples

(7o, ...,2,) € A" such that at least one z; # 0, modulo the equivalence relation
(0. oy xn) ~ (Axg, ..., Ax,) for all A € K*. Write [z, ...,x,] for the equivalence
class of (zo,...,x,). We call these homogeneous coordinates of the corresponding

point in P". P"(K) := {[xg,...,z,] € P": x; € K,0 < i < n}, the set of K-rational
points of P".

Definition 1.9 Say that a polynomial f € K[X] = K[Xo,.. -, X,,] is homogeneous
of degree d if f(AXo,...,AXy) = Af(Xo,...,X,) for all A € K. Say that an ideal |
of K[X] is homogeneous if it is generated by homogeneous polynomials.

Definition 1.10 A projective algebraic set is any set of the form V; := {P € P" :
f(P) = 0 for all homogeneous f € I}, for a homogeneous ideal I in K[X]. If V
is a projective algebraic set, we define (V) := {f € K[X] : f is homogeneous and
f(P) =0 for all P € V}, the homogeneous ideal of V. Say that V' is a projective
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algebraic variety if (V) is a prime ideal of K[X].

Consider the maps ¢; : A" — P" given by (x1,...,2,) — (z1,..., %5 1, @i, ..

If V is a projective variety, then V' N ¢;(A") is an affine variety.
Example. V : X3+ Y? = 1. This gets sent to X? +Y?Z = Z3.

Example. X2Z + Z3 4+ Y? = 0. Dividing by Z3 gives

()

S Tp)-

Definition 1.11 Suppose Vi, Vo C P are projective varieties. A rational map from
Vi to V4 is a map of the form ¢ : Vi — V5 given by P — [fo(P),..., fn(P)], where
fo,--, fn € K(V1), at every point P € V; at which fy,..., f, are all defined. Say
that ¢ is regular (or defined) at P € V; if there exists g € K (V) such that gf; is
regular at P and gf;(P) # 0 for some i. A morphism is a rational map which is
regular at every point. We say that V; ~ V5 if there are morphisms ¢ : V; — V5 and

1 Vo — Vi such that ¢ o ¢ = idy, and g oy = idy,.



Chapter 2

A Crash Course on Algebraic Curves

Definition 2.1 For us a curve is an irreducible projective variety of dimension 1, de-
fined over K. K(C) is the function field of C. (We have a map C — P!, and K(C)/K
has transcendence degree 1.) If P € C(K), set Mp = {g € K(C) | g(P) = 0}. (Note
that Mp is the maximal ideal of K[C]p, the local ring of C' at P.)

Given f € K(C)*, we say that ordp(f) =i if f € M}, and f & M} Div(C) is the
free abelian group generated by C(K), or

{Z ni b

So we have a divisor (f) = div(f) = >_,ordp(f)- P. This gives us a map K(C)* —
Div(C).

n; € Z, RGC(K)}.

Theorem 2.2 Let (f) = > ,ordp(f) - P. Then
(1) deg(f) := 2 pordp(f) = 0.
(2) (f)=0iff f e K*.

Reasons.

(1) A nonconstant f € K(C) gives a map f : C — P! given by

[f(P),1] if fis regular at P,
—
[1,0] otherwise.

Then (f) = f*{{0} — {oo}}, and this last divisor has degree zero.
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(2) If (f) = 0, then f has no poles. So the map f : C — P! is not surjective, and
therefore is constant (see below).

Div?(C) is the set of divisors of degree zero. Set
Div'(C)
{(f) | f e K(C)<}

— this carries the structure of an abelian variety.

Pick(C) =

More Facts. Suppose ¢ : C; — (5 is a rational map.
(a) If P € Cy is a smooth point, then ¢ is regular at P.

(b) So, if Cy is smooth, then ¢ is a morphism.

Proof. Let ¢ = [fo,..., fa], fi € K(C). Choose a uniformizer t € K(C}) at P (i.e.
a generator of Mp). (We can do this, as P is a smooth point, by hypothesis.) If
a 1= ming<;<, {ordp(f;)}, then

e ordp(t®f;) > 0 for all 7, and
e ordp(t=*f;) = 0 for some j.

Hence each ¢t~ f; is regular at P, and ¢~ f;(P) # 0. Therefore ¢ is regular at P.

(c) If ¢ is a morphism, then ¢ is either constant or surjective (see Hartshorne,
Chapter II, Proposition 6.8).

From a morphism ¢ : C; — (5, we obtain a corresponding morphism of function
fields ¢* : K(Cy) — K(C) given by f — fo. In fact, there is a 1-1 correspondence
(actually an equivalence of categories)

nonconstant morphisms | finjections ¢* : K (Cy) — K(CY)
w:Cp — Oy fixing K '
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Definition 2.3 The degree of ¢ is defined by

deg(ip) = {[K(Ol) : " K (Cy)] if ¢ is nonconstant,

0 if ¢ is constant.

(Define the separable and inseparable degrees deg,(¢) and deg;(¢) similarly.) The
map ¢, : K(Cy) — K(C5) is defined by ¢, = (¢*) ™" o Ng(cy) /o K (Ca)-

Fact. If ¢ : C| — (5 is a map of degree one between two smooth curves, then ¢ is
an isomorphism.

2.1 Local Behavior

Let ¢ : Cy — C3 be a nonconstant morphism. Let P € Ci, and let t,p) be a local
uniformizer at ¢(P) € Cy. The ramification index e, (P) of ¢ at P is defined by

ex(P) = ordp(p*t,(p)).

(So e,(P) > 1.) Say that ¢ is unramified at P if e,(P) = 1. Say that ¢ is unram-
ified if it is unramified at every point of Cj.

Theorem 2.4

(1) For all but finitely many points @ of Cy, we have #o71(Q) = deg (). (Here
we are counting the number of points over K.) (cf: only finitely many primes
ramify in a finite extension L/K of number fields.)

(2) D pep1(q) o (P) = deg(p). (cf: Y eif; = [L: K] for number fields.)

(3) If ¥ : Cy — (5 is another nonconstant map, and P € C, then ey, (P) =
es(P)ey(p(P)). (cf: multiplicativity of ramification in towers of number fields.)



2.2 The Frobenius Morphism

Suppose now that K is perfect with char(K) = p > 0, and set ¢ = p". For any
polynomial f, we may form the polynomial f@ by raising each coefficient of f to the
¢'™ power. So, given a curve C//K, we obtain the curve C9 /K. There is a natural
map ¢ : C — C@ given by [xg,...,z,] = [2f,...,29]. ¢ is called the ¢"" power
Frobenius morphism.

Theorem 2.5 Notation as above.

(1) ¢"(K(C')) = K(C)* = {f*: f € K(C)}.
(2) ¢ is purely inseparable.

(3) deg(9) = g-
(4)

4) Suppose that ¢ : Cy — (5 is a map of smooth curves. Then v factors as

A
N NN

where ¢ = deg; (1)), ¢ is the ¢'® power Frobenius map, and ) is separable.

(See Silverman II, §2.)

2.3 Divisors

Div(C) = {D =3 p.cnp(P)|np € Z and np = 0 for almost all P}, i.e. Div(C) is
the free abelian group generated by the points on C. The degree of D is deg(D) :=
> pecnp. DIVY(C) = {D € Div(C) | deg(D) = 0}. D € Div(C) is principal if
D = (f) = div(f) for some f € K(C)*. Say that D; and D, are linearly equiv-
alent, and write Dy ~ Dy, if Dy — D, is principal. Pic(C) := Div(C')/{principal
divisors} is the Picard group of C.



Example. Every divisor of degree zero on P! is principal. For suppose D = Y np(P),
deg(D) = 0, with P = [zp,yp] € P'. Then D is the divisor of the function

11 wez = zpy).

PeP!

We have an exact sequence
1— K* — K(C)* dy Div’(C) — Pic’(C) — 0.
c.f.. if L is a number field, we have an exact sequence

1 —o0f - L — I, — Cllog) — 0.

Definition 2.6 Suppose ¢ : C; — () is a nonconstant map of smooth curves. Define

the pullback ¢* : Div(Cy) — Div(C}) by
Q)= > elP)(P)
Pep=1(Q)

and the pushforward ¢, : Div(C}) — Div(Cy) by (P) — (¢P). Extend to arbitrary
divisors by Z-linearity.

So for example if C' is smooth and f € K(C) is nonconstant, then we have f : C' — P!
given by
P [f(P),1] if f is regular at P,
[1,0] otherwise.

Then div(f) = £((0) — ().

Properties.
(a) deg(¢p*D) = (deg ¢)(deg D) for all D € Div(Cs).
(b) ¢*div(f) = div(¢*f) for all f € K(Cy)*.

10



(¢) deg(¢.D) = deg(D) for all D € Div(Cy).

(d) ¢.div(f) = div(g.(f)) for all f € K(Ch)*.

() ¢. 0 ¢* is multiplication by deg(¢) on Div(Cy).

(f) If ¢ : Cy — C}5 is another map between smooth curves, then (¢ o ¢)* = ¢* o ¢*
and (¢ 0 @), =1, 0 ¢,

2.4 Differentials

Definition 2.7 Let C'/K be a curve. The space of differential forms Q¢ on C is
the K(C)-vector space generated by the symbols {dz | x € K(C)} subject to the
relations

(a) d(z +y) = dv + dy for all z,y € K(O).
(b) d(zy) =z dy + y dx.
(c) da=0forallac K.

If o : ) — C5 is a nonconstant morphism of curves, then there is a natural map
©*: Qe, — Q¢, given by

D fidwi—= Y (¢ f) dlgta).

Theorem 2.8

(1) Q¢ is a 1-dimensional K (C')-vector space.

(2) ¢ : Cy — Cy is separable iff ¢* : Q¢, — Q¢, is nonzero (and so is injective).
Suppose that P € C, and let t € K(C) be a local uniformizer at P.

(3) Suppose w € Q¢. Then there exists a unique function g € K(C) (depending on
w and t) such that w = g dt. Set g := <

(4) If f € K(C) is regular at P, then is regular at P also.
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(5) ordp(w) := ordp (%) depends only upon w and P and not upon ¢.

(6) Suppose that € K(C) with K(C)/K(x) separable, with 2(P) = 0. Then
ordp(f dz) = ordp(f) + ordp(z) — 1 for all f € K(C).

(7) ordp(w) = 0 for all but finitely many points P € C.

We may attach a divisor to w € Q¢ as follows:

Definition 2.9 Suppose that w € (2. Then

div(w) == Z ordp(w)(P).

pPeC

w is regular or holomorphic if ordp(w) > 0 for all P € C'. w is nonvanishing if
ordp(w) <0 for all P € C.

Definition 2.10 Suppose w € Q¢, w # 0. The image of w in Pic(C) is called the
canonical divisor class on C. (Note that this definition makes sense because (¢
is a 1-dimensional K (C)-vector space.) Any divisor in this class is called a canonical
divisor.

Example. Let C = P!. Suppose that t is a coordinate function on P!. What
is div(dt)? If a € K, then t — « is a uniformizer at . Then dt = 1-d(t — ),
so ordy(dt) = 0. At oo € P!, 1/t is a uniformizer. Then dt = —t* d(3), so
orde(dt) = ords (—t* d (1)) = —2. Thus div(dt) = —2(c0). So if w € Qp, w # 0,
then deg(div(w)) = deg(div(dt)) = —2. So w is nonholomorphic.

We say that a divisor D = ) ,np(P) € Div(C) is effective or positive, and we
write D > 0, if np > 0 for all P € C. If Dy, Dy € Div(C), then Dy > Dy iff
Dy — Dy > 0.

Example. div(f) > —n(P) means that f has a single pole of order at most n at P.
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Definition 2.11 Suppose that D € Div(C'). Define
Z(D):={fe K :div(f) > -D}U{0}.

Then £ (D) is a finite-dimensional K-vector space (exercise). Set £(D) := dimyz £ (D).

Proposition 2.12 Let D € Div(C).
(a) If deg(D) < 0, then £ (D) = {0}, and ¢(D) = 0.
(b) Z(D) is a finite-dimensional K-vector space.
(c) If D' ~ D, then £ (D) ~ Z(D’), and ¢(D) = ¢(D").

Example. Suppose that K¢ € Div(C) is a canonical divisor on C, with K¢ = div(w),
say. Then f € Z(K¢) iff div(f) > —div(w) iff div(fw) > 0 iff fw is holomorphic.
But every differential on C' is of the form fw, so we have

Z(K.) ~ {w € Q¢ : w is holomorphic}.

Theorem 2.13 (Riemann-Roch) Let C' be a smooth curve and K¢ a canonical di-
visor on C. There is an integer g > 0 (the genus of C') such that for every divisor
D € Div(C), we have {(D) — {(K¢c — D) = deg(D) — g + 1.

Corollary 2.14
(a) U(Kc)=g.
(b) deg(Kc) =29 2.
(c) If deg(D) > 2g — 2, then (D) = deg(D) — g + 1.

Proof.

(a) Take D = 0 in Riemann-Roch.
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(b) Take D = K¢ in Riemann-Roch, and apply (a).

(c) Observe that from (b), we have deg(D) > 2¢g — 2, so deg(Kc — D) < 0, and so
(Ko — D) = 0. Now apply Riemann-Roch.

Example. Let C = P!. There are no holomorphic differentials on P!, so ¢(P') = 0.
Thus the genus of P! is 0. Applying Riemann-Roch gives (D) — {(—2(c0) — D) =
deg(D)+1. If deg(D) > —1, then {(—2(c0)— D) = 0, and we have ¢(D) = deg(D)+1.

Example. Suppose that char(K) # 2 and that ey, ey, e5 € K are distinct. Let

C: = —e)lr—e)(r—e) (1)
Exercise: Show that C' is smooth and has a single point P,, = [0,1,0] at co. Set
P, =(e;,0) e Cfor 1 <i<3.

(a) For example,
2

Y
(x —eg)(x —e3)’
and div(z —e1) = 2(P;) — 2(Px). Now div(z —e;) = 2(F;) — 2(Px) (1 <1< 3)
and (1) give

r — e =

div(y) = (P1) + (P2) + (Ps5) — 3(Px).

(b) Let’s compute div(dz). |[Recall: if 3 € K(C) with K(C)/K(3) separable and
B(P) =0, then
ordp(a df) = ordp(a) 4+ ordp(B) — 1
for all « € K(C) (Theorem 2.7(c)).] Now we have (1 <i < 3)

de = d(z —e;) = —2° d (1) .

T

Thus ordp, (dz) = ordp,(d(z — ¢;)) = 1, and

ordp, (dr) = ordp, (_Iz ! G))

1
= ordp,_(—2%) +ordp_ d (—)
T

1
= ordp_(—2?) + ordp, <—> -1
x

= 4+2-1
= -3.
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At other points Q € C, the map z : C — P! given by

p [x(P),1] if x is regular at P,
—
[1,0] otherwise,

is unramified, and so = —2(Q) is a uniformizer at (). So ordg(dx) = ordg(d(x —
z(Q))) = 0. Hence

div(dz) = (P)) + (P2) + (Py) — 3(Py) = div(y).

Therefore div <dj‘> = 0, and so df is a nonvanishing holomorphic differential on

C.

(c) div (%) =0, so K¢ = 0. Thus g, the genus of C, is equal to /(K¢) = £(0) = 1.
Riemann-Roch tells us that ¢(D) = deg(D) if deg(D) > 1.

Some special cases.

(i) Let P € C. Then (((P)) =1, so Z((P)) = K (since certainly K C .Z((P))!).
So there are no functions on C' that have a single simple pole.

(ii) £(2(Px)) = 2. A basis for Z(2(P)) is {1, x}.
(iii) A basis for £ (3(Py)) is {1,z,y}. A basis for £(4(Py)) is {1, z,y, 2*}.

(iv) Observe that {1,z,y, 2% zy,y? 23} C Z(6(P)). But £(6(P)) = 6, so these
functions are R-linearly dependent.

Theorem 2.15 (Hurwitz Genus Theorem). Let ¢ : C; — (3 be a nonconstant
separable map of smooth curves with g; the genus of C;. Then

291 — 2 > deg(p) (202 — 2) > deg() (202 — 2) + Y _ (e,(P) — 1),
PeCy

with equality iff either
(i) char(K) =0, or
(i) char(K)=p >0 and p{ey,(P) for all P € Cj.
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Proof. Let ¢ : C; — C3 be given by P — @ := ¢(P), and let w € Q¢,, w #0. If ¢
is separable, then p*w # 0. The strategy is to compare ordp(¢p*w) with ordg(w) and
use deg(div(p*w)) = 291 — 2.

Set w = f dt, with ¢t € K(Cy) a uniformizer at . Then p*t = us®, e := e, (P), s a
uniformizer at P, and U(P) # 0. Then

P =) dlpt) = () dlus”) = () (cus™ 4 )

Now if u is regular at P, then 4 9% is regular at P, i.e. ordp (ds) > 0, so ordp(p*w) >
ordp(p* f) + e — 1, with equality iff e # 0 in K. Also ordp(¢*f) = e,(P)ordg(f) =
e,(P)ordg(w). Hence

deg(div("w)) 2 3 [ep(P) ordym) () + e, (P) — 1

PeCy

= Z P)ordg(w)+ Y (e,(P) = 1)
QEeC2 Pep—1(Q PcCy

(deg " ><deg<dw< M+ D (ep(P)—1)

Hence

291 — 2 > (degp) (202 — 2) + » _ (e,(P) — 1).
PeCy
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Chapter 3

The Geometry of Elliptic Curves

Definition 3.1 An elliptic curve E/K is a smooth curve over K, of genus 1, with a
specified point O € E(K).

Example. (Weierstraf Curves). Assume char(K) # 2 or 3. In P2, take the curve C
(which we suppose to be smooth)

3

y2z + a1xyz + a3y22 — 2% — apr?z — ayx2® — a2’ = 0,

a; € K for all i. The affine equation is
y* 4 arzy + azy = 2° + asx® + as + ae.
Set O :=[0,1,0] and f(x,y) := y* + ayzy + azy — (z* + asx?® + a4 + ag). Define a

differential
dx dy

W= = )
2y + a1x + as 312 + 200 + a4 — a1y

[Note: We have equality above because the left side is fy?;y) and the right side is

Tles) (iyy), and equality results from f,(z,y) dz + f,(z,y) dy = 0.]

We claim that w is holomorphic and nonvanishing. If P = (z¢,yo) were a pole of
w, then we would have f,(xo,y0) = fy(20,y0) = 0, which is a contradiction since C
is smooth. Consider the map C — P! given by [z,y,1] — [z,1] — this map is of
degree 2. Thus ordp(z — x¢) < 2. ordp(x — x¢) = 2 iff f(xg,y) has a double root iff

x d(x—
fy(@o, yo) = 0. Now w = s = g(aﬁo))’ 50

ordp(w) = ordp(z — xp) — ordp(f,) — 1 =0.
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We now check P = 0. ordp(z) = —2 and ordp(y) = —3. So if ¢ is a uniformizer at
O, then x = t72F and y = t 3G, where F(O) # 0 or co, and G(O) # 0 or co. So

de [ =ATF+tPF @t
- fu(z,y) 203G + a1t 2F + a3

(where F' = 2. Since F is regular at O, %= is also regular at O (Theorem 2.8(4)).

Thus % is regular and nonvanishing at O (char(K') # 2!). Thus ordp(w) =0

as desired. [If char(K) = 2, then in fact the same assertion holds, as may be seen by
calculating with w = ﬁ% instead.| Hence w is holomorphic and nonvanishing (i.e.

w

(w) = 0). Now apply Riemann-Roch: deg(w) =29 — 2, so g = 1.
What happens if a Weierstralt curve is singular?

Lemma 3.2 If (' is defined by a Weierstra equation and is not smooth, then there
is a map C' — P! of degree 1.

Proof. Suppose (0,0) is the singular point. Then %(0,0) = 3—5(0, 0) = 0. The
Weierstral equation for C' is of the form y? + ajzy + 23 + asz?. Consider the map
C' — P! given by (z,y) — £. We have

2
<Q> + a; (Q) =+ ay,
T x

and so there is exactly one inverse image of each £, as required.

Theorem 3.3 If £//K is an elliptic curve, then there exist ay, aq, ag, a4, a6 € K such
that F is isomorphic to the Weierstraf elliptic curve y? + a1zy + azy = 2° + asz? +
asxr + ag.

Proof. Recall that .Z(d(0O)) = {all functions on £ with no poles except possibly a
pole of order at most d at O}. Riemann-Roch tells that £(d(0)) = d—g+1ifd > 292,
which is d if d > 1 (since here g = 1). Applying this tells us that Z((0)) = K.
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Z(2(0)) = (1,x), where z € Z(2(0)) — Z((0)), and so ordp(z) = —2, and x has
no other poles. .Z(3(0)) = (1, z,y), wherey € Z(3(0))—Z(2(0)), and so ordp(y) =
—3, and y has no other poles. .Z(4(0)) = (1,z,y,2?). Z(5(0)) = (1,z,y, 2% zy).
Z(6(0)) = (1,2,y,2% xy,2°) or (1,2,y, 2% vy, y?), and we know that x> and y? are
not independent, since £(6(0)) = 6. So {1, z,y,x?, zy, z%,y*} are linearly dependent.
Hence we can write Agy? + Ajzy + Azy = Az + Asa?® + Ayx + Ag with AgAj # 0.
Without loss of generality, Ag = 1. Perform the transformation = — Ajz, y — Ajy;
then without loss of generality Ay = Aj = 1. So the equation becomes

C:y? + Ayxy + Asy = 22 + Ayx? + Az + Ag.

Define a map ¢ : F — C via ¢* : z +— x, y — y. To show that ¢ is an isomorphism,
it suffices to show that ¢ is of degree 1, and C' is smooth. We have x : E — P! with
deg(z) = 2. So [K(F) : K(z)] = 2. Similarly, since deg(y) = 3, [K(FE) : K(y)] = 3.
Hence [K(FE) : K(z,y)] divides both 2 and 3, and so K(F) = K(z,y). Thus

deg(p) = [K(E) : 9" K(C)] = [K(B) : K(x,y)] = 1.

Suppose now that C' is not smooth. Then there exists a map v : C' — P! of degree
1 (Lemma 3.2), and so ¢ o ¢ is an isomorphism, since both F and P! are smooth.
This is impossible, since P! does not have genus 1. Thus C is smooth, and so ¢ is an
isomorphism.

Corollary 3.4 The Weierstrafl coordinates x and y on E are unique up to x + u?a’+r
and y — u®y + su’a’ +t, with u,r,s,t € K, u # 0.

Proof. Suppose {z,y} and {2’,y'} are two sets of Weierstrafs coordinates on £. Then
ordp(z) = ordp(2') = —2, and ordp(y) = ordp(y') = —3, so {1,z} and {1,2} are
bases of Z(2(0)), and {1, z,y} and {1, 2’,y'} are bases of Z(3(0)). Thus there exist
Uy, U, T, S2,t € K with ujug # 0 such that x = uy2’ +r and y = ugy’ + sex’ +t. (z,y)
and (2/,y') both satisfy Weierstra equations with coefficients of Y2 and X3 equal to
1, so u} = u3. Now set u = uy/u; and s = sy/u? to obtain the result.
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3.1 The Addition Law on FE

Proposition 3.5 If D € Div)(E), then there is a unique point P € F(K) such that
D ~ (P)—(0). (Recall that A ~ B iff there exists f € K(FE) such that (f) = A—B.)

Proof. It follows from the Riemann-Roch Theorem that ¢(D + (O)) = 1, since
deg(D) = 0. Thus there exists f € Z(D + (0)) with (f) > —D — (O). Since
deg(f) = 0, there exists a point P such that (f) = —D — (O) + (P). Thus
D ~ (P) — (O), and this demonstrates the existence of P. Next, observe that if
D ~ (P") — (O), then there exists g € K(FE) such that (g9) = —D — (O) + (P’), so
g€ Z(D+(0)),s0 g=cf for some c € K*, since £(D + (O)) = 1. Thus (g9) = (f),
and so (P) = (P').

Thus we have a map ¢ : Pic(F) — E(K) given by [D] — P, where D ~ (P) — (O).
o is plainly surjective. It is injective because if 0(D) = O, then D ~ (O). The inverse
of o is the map & : E(K) — Pic%(E) given by P+ [(P) — (O)].

3.2 Another Description of the Addition Law

We define a composition law @& on E as follows: Let P,Q € E, let L be the line con-
necting P and ), and let R be the third point of intersection of L with E (Bézout’s
Theorem). Let L’ be the line connecting R and O. P & ) := the point on E such
that L intersects F at R, O, and P & Q.

#Q st B
4 -
LTt 1 \“‘\\
PB®Q®R =0 pgu“T

20



To show that this law of composition is the same as the one defined above, it suffices
to show that k(P & Q) = k(P) + k(Q). (Here “4” means addition of divisor classes
in Pic) (E).) Let f = aX + B8Y +vZ = 0 be the equation of the line L' connecting
R and O. Then (f) = (P)+(Q)+ (R) —3(0), (f") = (R)+ (P® Q) — 2(0) (since f
and f” have no poles in the affine plane). Thus
/
(f)-trea-w-@+0~0

and this implies that (P & Q) — k(P) — k(Q) = 0.

The addition law on E is a morphism. We have that (see Silverman III, §2.3)

(z1,01) + (22, 92) = ( - - )

(22 — 21)%" (22 — 11)?

if 21 # x3. So the addition map is regular except possibly at (P, P), (P, —P), (P,0),
and (O, P). To take care of these points: For () € E(K), consider themap 7o : £ — E
given by P — P + @; this is a morphism (even an isomorphism!). Now look at

ExE ™ pyp * pTu%
given by
(P, P) = (P+ Q1,2+ Q) » P+ Qi+ P+ Qo= P+ P
Choose @1 and )5 to avoid the “bad set.”

3.3 Isogenies

Definition 3.6 An isogeny from £ to Es (elliptic curves) is a morphism ¢ : E} — Fy
with p(O) = O. (In particular, according to this definition, F; — O is an isogeny.)
Say that E; and Fs are isogenous if there is a nonconstant isogeny ¢ : E; — Es.

(If ¢ : By — Es is a morphism, then 7_ o) is an isogeny.)
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Theorem 3.7 If ¢ : Fy — FE5 is an isogeny, then ¢ is a group homomorphism, i.e.
p(P+@Q) = ¢(P) + ¢(Q).

Proof. This follows from the fact that the following diagram commutes:
E\(K) —=>Pick(E})
|
Ey(K) —== Pic% (E»)
and three of the arrows (i.e. all except possibly ¢) are group homomorphisms:

P——(P)—(0)

| |

Notation. Set Hom(F1, Fy) = {isogenies £y — FE,}. This is a group under addition
on E,. End(FE) = Hom(FE, E) is a ring under addition and composition.

Examples.
1. Let n € Z. [n] is multiplication by n, [n] € End(F).

2. If char(K) = p > 0, then the Frobenius map ¢ : = +— 2" on K induces a
map ¢ : E — E® via (z,y) — (2P,y?). If K = F, (¢ is a power of p), then
0@ E — E, and ¢@ is an endomorphism of degree ¢.

3. Consider the curve y? = 2% — x, and suppose /—1 € K. Then we may define a
map ¢ : £ — FE by (z,y) — (—z,iy), where i = v/—1. Note that ¢ # [n] for
any n, since p? = [—1].

Theorem 3.8 [n] is nonzero for all n # 0. Hom(E,, Es) is a torsionfree Z-module.
End(F) is an integral domain of characteristic 0. Define deg([0]) = 0. Then deg(v o

¢) = deg (1)) deg(y).
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Proof. We make the following claims:

(1) There exists P € E(K) with 2P # O.

(2) There exists Q € E(K), Q # O, with 2Q = O.
Note that (1)implies that [2] # 0. If n is odd, and @ is as is (2), then [n]Q = Q # O.
So [n] # 0. (This implies that [n] # 0 for all n # 0 — any map between two smooth
curves is either constant or surjective.) To see that End(E) is an integral domain,
suppose that ¢ o 1) = 0. Then deg(y) deg(v) = 0, so degp = 0 or degy = 0, and so

¢ =0 or ¢ = 0. Hence End(F) is an integral domain. A similar arguments shows
that End(F) is of characteristic 0, and that Hom(E, E») is Z-torsionfree.

We now prove the claim.

134 - b4I2 - 2b6£L’ - bg

2P) =
x( ) 4x3 + b2$2 + 2b4l’ + b6

(see III, §2.3 in Silverman). There exists an x € K such that this function has
no pole at . Choose the corresponding y € K. Then 2(x,y) # O. This proves
(1). For (2), we want € K which is a pole of 2(2P). Check that the polynomial
423 4 byx? + 2byx + bg does not divide z* — byx? — 2bgz — bs. Choose such an = and
the corresponding y. Then (z,y) # O, but 2(z,y) = O.

Proposition 3.9 Let ¢ : E; — FE5 be a nonconstant isogeny. Then

(1) #071(Q) = deg, p. e,(P) = deg; . (P € ¢ H(Q), say.)

(2) The map ker(¢) — Aut(K'(Ey)/¢*K'(E,)) given by R — 75, is an isomorphism.
(Here K’ is any field big enough to contain the coordinates of all R € ker(y).)

(3) If ¢ is separable, then ¢ is unramified, # ker ¢ = degy, and K'(E,)/¢*K'(E»)
is Galois.

Proof.

23



(1) Plainly #¢~1(Q) = #ker ¢ for any Q since ¢ is a group homomorphism. But
#o71(Q) = deg, ¢ for almost all Q (Theorem 2.4(1)), and so it is equal to deg, ¢
always. Next, we claim that e,(P) is independent of the choice of P € ¢~ 1(Q).
For if R € ker ¢, then

eporn(P) = exn(Pep(Ta(P)) = ery(P)e, (P + R),

and e, (P) = 1, since 7x is an isomorphism. Now observe that o, (P) = e,(P)
since Tr = ¢ (remember R € ker ¢!). We have

Y ep(P) = degp = deg; pdeg, p,
Pep=1(Q)
i.e. e, (P)deg, p = deg, pdeg, ¢, so e,(P) = deg, ¢.
50( S <p ZQO 590 Y ZQO

(2) Since ¢ o Tp = ¢, we have ThHp* = ¢* (induced maps of function fields).
So 7} acts as the identity on ¢*K’(E;). Hence we have a map keryp —
Aut(K'(Ey)/p*K'(Ey)); the left side has order deg, ¢, while the right side has
order at most deg, ¢. So it suffices to show that the map is injective.

Suppose that 75 = id on K'(F;). This implies that for all f € K'(E;), we

have f(P + R) = f(P) for all P € Ey(K). In particular, z(P + R) = z(P),
y(P+ R) = y(P),so P+ R = P, so R = 0. Hence the map is both injective
and surjective, and so is an isomorphism.

Corollary 3.10 Suppose that ¢ : Fy — Fy and ¢ : Fy — FEj5 are isogenies, with ¢
separable and ker ¢p C ker 1. Then there exists an isogeny A : Fy — E3 with Aoy = 1.

E1L>E2

s
s
)5
Es

Proof. Let K’ be a field of rationality for ker . Theorem 3.9 implies that
QO*K/(EQ) _ K/(El){T]*%ZRGkCI'(p}.

Y*K'(Es) is fixed by all 75, with R € kert. Thus we have K'(E;) D ¢*K'(Ey) D
*K'(F3). This implies that there exists A : Es — FEj3 such that A o ¢ = ¢, with
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Theorem 3.11 Given a finite subgroup ® of E(K), there is an elliptic curve £’ and
a separable isogeny ¢ : ' — E’ with ker p = ®. Furthermore, (¢, £’) is unique up to
isomorphism. We write E' = E/®.

Proof. Set G = {r}; : R € ®}. Then G acts as a group of automorphisms of K(E),

and, via Galois theory, we have that [K(F) : K(E)Y] = #®. Thus there exists a non-
singular curve C'//K and a finite morphism ¢ : E — C such that ¢*K(C) = K(E)“.

We claim that K(E)/K(C) is unramified. To see that this claim is true, suppose
that @ € C(K). Then if p(P) = @, then we have that (P + R) = @ for all R € ®.

#o71(Q) > #D, #o1(Q) = deg, . Since
Y ep(P) = deg(y),

Pep=1(Q)

this implies that e,(P) =1 for all P € ¢~ 1(Q), and that ¢ is separable.

Now apply the Hurwitz genus formula (Theorem 2.15): 295 — 2 = deg p(2gc — 2),
so goc = 1. Now define Oc = ¢(Og). Then C is an elliptic curve, and ¢ is an
isogeny with ker o = ®. Uniqueness follows from the fact that if ker ¢ C ker ), with
© separable, then we have

Ei>E1

A
AT
¥ v

Es
(cf Corollary 3.10).

3.4 Invariant Differentials

Now let E//K be an elliptic curve with Weierstraf equation

y2 + arxy + azy = 2%+ ayr® + agr + ag.
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Set
dx dy

Y= 2y + a1z + as - 322 + 2a07 + ag — a1y
We showed earlier that (w) = 0.

Theorem 3.12 If Q € E(K), then 75w = w.

Proof. Since Qp is 1-dimensional, we have that Thw = fow, fo € K(E)*. Since 7,
is an isomorphism, it follows that (7w) = 0, whence (fg) + (w) = 0, so (fq) =0, so
fo € K. We note that Q — fg € K* is a rational map E — P! (this is clear because
we could do everything explicitly and express fg as a rational function of z(Q)) and
y(Q)). This map is not surjective, since it misses 0 and co. This implies that @ — fg
is a constant map, and so fo = fo = 1.

Theorem 3.13 If ¢, : EF — E’ are isogenies, then ¢*w + ¥*w’ = (¢ + ¥)*W'.

Proof. If f, f, € K(FE) satisfy the Weierstrak equation of F, define

dfy df

w(fi, f2) = 2fo +aifi +as - 3ff + 2aaf1 + as — ar fo

(so e.g. w(z,y) = w, using our earlier notation). We wish to prove that
w(e (@, 1) + w@W (@ y)) = w((e+ ) (=", ).
We claim that w(f1, f2) +w(g1, 92) = w((f1, f2), (91, 92)). Now

w((fly fZ) + (91792)) = F(flv f27glvg2)w(f1a fQ) + G(fl, f27gl792)w(91792)7 (T)

and to establish the claim, we have to show that F' and G are identically 1. Take

(91,92) = Q € E(K) and (fi, f2) = («,y). Then
w((f1, f2) + (91, 92)) = THw = w.

The right side of (1) is F(z,y,Q)w = 1 -w, and this holds for all Q € F(K). This

implies that F'(f1, fa, g1, g2) is identically 1. Now choose (f1, f2) = @, (91, 92) = (z,y)
and use a similar argument to deduce that G(fi, f2, g1, g2) is identically 1.
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Theorem 3.14 [m]*w = mw.

Proof. The result is true for 0 and 1, and so, by induction, it’s true for n + 1, since
we have [n + 1J*'w = [n]*w + [1]*w.

Application. [m] is separable iff (m,char(K)) = 1, or char(K) = 0 and m # 0.
[If C} and Cy are curves, and ¢ : C7 — C5 is a morphism, then ¢ is separable iff
©* 1 Q¢, — Q¢ is nonzero (or, equivalently, injective). See Silverman II, 4.2(c).]

Consider the Frobenius isogeny ¢, : £ — E@ given by & — 9. Then ¢*dr =
d(z?) = 0, and so ¢ is not separable, since p*w = 0. Now suppose that E/F,; then
v, B — E, and 1 — ¢, is separable, since (1 — ¢,)*w = w. This is useful: Observe
that

B(F,) = E(F,)" = ker(1 - ¢,).

Thus #E(F,) = deg(1 — ¢,).

3.5 Dual Isogenies

Suppose that we have an isogeny E > E’. This induces Pic’(E) bl Pic’(E"). Since
we may identify Pic’(E) with E, we want to think of ¢* as being a map E' % E.

Theorem 3.15 Suppose that ¢ : F — FE’ is an isogeny of degree m. Then there
exists a unique ¢ : £’ — F such that ¢ o ¢ = [m]. Furthermore, ¢ is given by

E' 5 Pic®(E) 5 Pic’(E) = E.

Proof. We first show uniqueness. Suppose that o = ¢ = @' o p = [m]. Then
(p —¢') o = 0. Since ¢ is nonconstant, it follows that ¢ — ¢’ is constant, whence
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We now show existence. Suppose that ¢ is separable. Then # ker p = m = deg ¢,
and so it follows that ker ¢ C ker[m]. Via Corollary 3.10, we see that there is an
isogeny ¢ : B/ — FE such that the following diagram commutes:

E—>F'

|
[mxf

E

Suppose now that char(K) = p > 0. Then if w is an invariant differential on E, we
have [p]*w = pw = 0 (Theorem 3.14), and so [p] is not separable. Hence [p] = Ao F*,
where A is separable, F' is the Frobenius map z + z”, and e > 1 (Theorem 2.5(4)).
So, we define F' = Ao Fe~1. Now observe that for any isogeny ¢, we have ¢ = po F",
where F' is Frobenius and p is separable. Define ¢ = Fro jt. Then

pop=(F"ofi)o(uoF")=degu-p" = degep.
Suppose that @@ € E'(K). What is ¢(Q)? First notice that @ = ¢(P) for some

P € E(K), and so ¢(Q) = ¢(p(P)) = mP. We have (under the composition
described in the statement of the theorem):

Q—Q-0
= eo(S)S = D e(R)R
(@)

Sep~! Rep~1(0)

= deg; p Z (P+R—-R)

Reker ¢
= (deg, p)(deg, )P
= (degp) P

Theorem 3.16 Suppose that ¢ : £} — FE, is an isogeny. Then
(1) pop=pop=][degy].

—_—

(2) If A : By — Ey, then po A= Ao .
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(3) If \: By — Ey, then g + A = ¢ + .

(5) degp = deg¢.

(6) ¢ =¢.

Proof.
(1) By definition, we have ¢ o p = [deg ¢]. So
popop=poldegy] = [degy]oyp,
and thus ¢ o ¢ = [deg ¢].

(2) Observe that we have

(Ao @)o(por)=Ao[degy] oA = [degpl[deg A] = [deg( 0 V)],
and now the result follows via the uniqueness of the dual isogeny.

(3) 9(Q) = ¢*(Q — O). So we need to show that p* + A\* = (¢ + A\)* on Pic(Es).
(See Silverman I1I, §6.2.)

(4) This is true for m = 0 and m = 1. Now observe that, using induction,
mE1]=[m]x[1]=[m]£[1] =[mx1].

(5) First note that
[deg[m]] = [m] o [m] = [m] o [m] = [m’].
So deg[m] = m?. Now suppose deg ¢ = m. Then we have

[m?] = [deg[m]]
deg(p o 9)]

(deg ) (deg )]
m o deg ).

[
= [
[
= [
Hence deg ¢ = m.
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(6) Suppose that m = deg . Then

~

pop=[m]=[m]=gop=¢go

~'6>>

Hence ¢ = gé

So now we can describe E,, = E[m], the kernel of [m] : B(K) — E(K).

Case I. char(K) = 0 or char(K) { m. Then
#Ey = #ker([m]) = deg,[m] = deg[m] = m?,

so B, ~7Z/mZ x Z/mZ. (Look at the number of possible cyclic factors in the prime
power case.)

Case II. Consider E,e, p = char(K). Then #E,. = deg,[p°] = deg,(¢ o ¢)¢, where ¢
is the Frobenius map z — xP. Then

A

Qo =[p] = (deg, (¢ o)) = deg,(p)".
Then

1 if ¢ is inseparable,

deg () = {

p if ¢ is separable.

So if ¢ is inseparable, then #E,. = 1. If ¢ is separable, then #E, = p° for all e, so
E, ~7/p°L.

We can now describe all of the possibilities for the automorphism algebra of an elliptic
curve.

Properties of End(FE).
e Ring with identity.

e No zero divisors.
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e End(FE) has an involution ¢ +— ¢ which is additive and antimultiplicative,
—pop € 7Z,and @ o p > 0, with equality iff ¢ = 0.

Theorem 3.17 (Hurwitz) Any ring R with the above properties is one of the follow-
ing:

1. Z.
2. An order in an imaginary quadratic field with ~ being complex conjugation.

3. An order in a definite quaternion algebra over Q with ~ being the canonical invo-
lution. [A definite quaternion algebra over Q is an algebra Q4+ Qo+ QB+ Qag,
where o?, 32 € Q, o2, 3? < 0, and a8 = —Sa.]

Proof Sketch. We have Z C R. If Z C R, choose a € R such that o? € Z,
a? < 0 (use reduced norms and traces to do this; N(a) = ad, Tr(a) = a + &). Then
Zla] C R; if Z[a] is of finite index in R, then we are done. If not, then find § € R
with 32 € Z, 3* < 0, and a8 = —fa. Then Z|a,3,a3] C R. If rank R > 4, then
there exists a Cayley algebra contained in R, which is a contradiction since Cayley
algebras are nonassociative [cf. J. Baez, “The Octonions,” AMS Bulletin 39 (2002),
145-205].

If char(K') = 0, then we have (1) or (2). If char(K) = p > 0, then we have (2) or (3).

Proposition 3.18 Let E be an elliptic curve, and suppose that D = Y np(P) €
Div(F). Then D is principal iff > np =0 and > [np]P = O.

Proof. Recall (Proposition 3.5) that we have a map o : Pic%(FE) = E(K), [D] ~
Div(P) — (O) — P. Every principal divisor has degree zero. Suppose that D €
Div'(E). D ~ 0iff o(D) = O iff Y [np]((P) — (0)) =) iff Y_[np]P = O.
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3.6 The Weil Pairing

This is a pairing [, ], : Em X Ep — i, char(K) 1 m. It is bilinear, alternating,
nondegenerate, and Galois equivariant.

Construction. Suppose that S,T € E,,. Observe that the divisor m(7T) — m(O) is
principal. Suppose m(T) — m(O) = (f), say. Suppose that 7" is such that m7" = T.

Then
(m]*(T) —=m*(0) = > (T'+ R) — (R),

ReEm

and this is again a principal divisor equal to (g), say. Observe that

Therefore fo[m] and g™ are the same up to a constant. Choose the constant implicit
in the definition of f to ensure that f o [m] = ¢™. Then

g(X +5)" = fo[m](X +S) = f(mX +mS) = f(mX) = g(X)".

g(X+95)

[So m(g o 7s) = (f ©Tms o [m]) = (f o[m]) = m[g].]| Hence we have that £ €
tm C K, and we define
g(X +5)

S, T = ——.

5] 9(X)
This is the Weil pairing.
Bilinear in S.

X+5+5 X+5+5 X+S
11+ 8o, 7] = SX TS 5) g X+ S+ 5%) gX+5) (g g .

9(X) 9(X + 51) 9(X)

Bilinear in 7. Choose functions f; and ¢; with

(f1) = m(Ty) — m(O), (g1) = [m]*(T1) — [m]*(O),
(f2) = m(Tz) — m(0), g2) = [m]|"(Tz) — [m]"(0),
(f3) = m(T1 +Tz) — m(0), (93) = [m]"(Th + T2) — [m]*(O).
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There exists a function h such that (k) = (T} + T3) — (T1) — (12) + (O). We have

gs(X"‘S).

5,1+ 12 = 93(X)

From the construction of h, we have that

() =,

and so we have 2 = c(h o [m]); we may assume that ¢ = 1.

(X +5) (X +9) X +5) h(mX+5))
93(X) a 91(X) 92(X) h(mX)

1.e. [S, T1 + TQ] = [S, Tl] : [S7T2]

Alternating. It suffices to show that [T,7] = 1. Now

<1:[fonT> Zm (i + 1)T) — (iT)) = 0,

1=0

and so the function H:.r;Ol f o7 is constant. Also, if mT" =T, then H:igl g o Ty 18
also constant, since

m—1 mo m-1 m—1
<HgoTiT’> = HngTiT/= Hf m) o Ty = (HfOTiT) o [m],
i=0 i=0 i=0

which is constant. Hence we have

(H gO’TiT/> (X) = (H goTiT/> (X +1),

so g(X)=¢g(X+T),s0 [T,7T] = 1.

Nondegeneracy. Suppose that [S,T] =1 for all S € E,,. Then g(X) = g(X + 5)
for all S € E,,. Recall (see Proposition 3.9(2)) that there is an isomorphism E,, —
Aut(K(E)/[m]*K( ), S+ 4. Tt follows that we have g € [m]*K (E), i.e. g = ho[m)
for some h € K(E). Then

h™ o [m] = (hom)™ = g™ = fo[m],
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so f =h". Thus m(h) = (f) = m(T) — m(O). Thus (h) = (T) — (0),s0o T = O.

Galois equivariance. Suppose o € Gal(K/K). If f and g are the functions corre-
sponding to T', then f? and ¢ are the functions corresponding to T7. So

o FXTEST) (gD
5T = = oy ‘( 9% ) = 51

Compatibility. IF S € E,,,,, and T € E,,, then [S, T, = [m'S, T],,. For we have
(f™) = mm/(T) — mm/(O). So

’ /

(gom)™™ = (f o [mm'])™.

Thus
Cgom (X +S)  gm'X +m'S) o
[S, T]mm' - go [m’](X) = g(m’X) = [ S, T]m.

Proposition 3.19 There exist S,T € E,, such that [S,T],, is a primitive m*™ root
of unity. Hence if F,, C F(K), then pu,, C K*.

Proof. The set {[S,T],, | S,T € E,,} is a subgroup pg of pi,,. So for all S,T € E,,,
we have [S,T)¢ =1, so [dS,T],, = 1, so ds = O (since [-,],, is nondegenerate), so
d = m (since S is arbitrary). The final assertion follows from the Galois equivariance
of the Weil pairing.

Proposition 3.20 Suppose that ¢ : Ey — Fj is an isogeny and that S € E;[m] and
T € Ey[m]. Then [S, ¢(T)]y = [¢(S), T)m.

Proof. Choose f,g € K(FE) such that (f) = m(T) — m(0O) and f o [m] = g™ (as
described in the construction of the Weil pairing). Then

_g(X +(5))
W&f%——?aT—~
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Now observe that we may choose h € K(E;) such that

¢"((1)) = ¢*((0)) = ((T)) = (O) + ().

(¢(T) is the sum of the points of the divisor on the left side — see Theorem 3.16.)
Then we have

v (L22) = (9) = mit) = () = m(0)

(hg%[i])m - ](Choo[m]jf = (fh(jf) = [m].

and

So

Consequence. Fix a prime ¢ # char(K). Then the following diagram commutes:

['7'}4n+1

Egn+1 X Egn+1 Hgn+1
[€e]x[¢] \L lz»—m[

Via compatibilities, we obtain a pairing

Zy(1)

TZ(E) X TE(E)
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3.7 The Tate Module

Let E/K be an elliptic curve and m > 2, with (m,char(K)) = 1. Recall that
En = Z/mZ x Z/mZ. Since Gal(K/K) acts on E,,, we obtain a representation

Gal(K/K) — Aut(E,,) ~ GLy(Z/mZ).

In order to study these representations, it is (extremely!) helpful to introduce the
following definition:

Definition 3.21 The (-adic Tate module of £ is Ty(E) : lim Eyn, where the inverse
limit is with respect to the maps [¢] : Epm+1 — Epm. Then T;(F) is a Zy-module, and
we have

T (E) N Zz X Zg if ¢ 7é Ch&l"(K),
T 0or Zy if £ = char(K).

T,(E) carries a natural Gal(K /K) action.

Definition 3.22 The (-adic representation of Gal(K /K) associated to E is the nat-
ural map

pe: Gal(E/K) — Aut(Ty(E)) ~ GLa(Zy).

Exercise. Define Z,(1) := lim yi¢». Then we have a representation
xe : Gal(Q/Q) — Aut(Zy(1)) =~ Z; = GLy(Zy).

Show that y, is surjective.

Theorem 3.23 (Serre)
(a) Im(py) is of finite index in GLy(Z,) for all ¢.

(b) Im(p,) = GLo(Zy) for almost all .

(See e.g. Serre’s Abelian (-adic Representations and Elliptic Curves.)

36



3.8 Isogenies

Suppose ¢ : By — Fy is an isogeny. Then ¢ induces homomorphisms ¢ : F{[("] —
E,[¢"] for all n > 1, which in turn induce ¢y : Ty(E;) — Ty(E2). So we obtain a
homomorphism

HOIIl(El, Eg) — HOIIl(Tg(El), Tg(EQ))
given by ¢ — ¢y.

Theorem 3.24 Notation as above. The natural map
HOHI(El, EQ) X Z@ — HOm(Tg(El), Tg(EQ))

given by ¢ — ¢, is injective.

Definition 3.25 Suppose that M is any abelian group. A function d: M — R is a
quadratic form if

(a) d(m) =d(—m) for all m € M.

(b) The pairing M x M — R given by (my, mg) — d(my + msz) — d(my) — d(my) is
bilinear.

We say that a quadratic form is positive definite if

(¢) d(m) > 0 for all m € M, with equality iff m = 0.

Lemma 3.26 Suppose that E; and FE5 are elliptic curves. Then the degree map
deg : Hom(Fy, Fy) — Z is a positive definite quadratic form.

Proof. The only nontrivial point is to show that the pairing (¢, ) = deg(¢ + ¢) —
deg(¢p) — deg(v)) is bilinear. Now

[(¢,)] = [deg(¢ + )] — [deg(¢)] — [deg(t))]
=(@¢+¢)o(p+¢¥)—dop—toy
=do+og,
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and this last expression is linear in ¢ and .

Lemma 3.27 Let M C Hom(FE}, E») be any finitely generated subgroup. Define
Mot := {¢ € Hom(E1, E3) | [m] o ¢ € M for some integer m > 1}.

Then M, is also finitely generated.

Proof. Extend the degree mapping deg : M — Z to
deg: M @ R — R, (%)

where we view M ®R as a finite dimensional real vector space equipped with the topol-
ogy inherited from R. Then (x) is continuous, and so U := {¢p € M @ R | deg¢ < 1}
is an open neighborhood of the origin. Recall that Hom(F;, E5) is a torsionfree Z-
module (Theorem 3.8), and so there is a natural inclusion Mg, — M ® R. Plainly
Mgy N U = 0 (since every nonzero isogeny has degree at least 1). So M, is a dis-
crete subgroup of the finite dimensional vector space M ® R, and so Mg, is finitely
generated.

Proof of Theorem 3.24 Suppose ¢ € Hom(E1, F3) ® Z, with ¢, = 0. Let M C
Hom(FE4, Ey) be any finitely generated subgroup such that ¢ € M ® Z;,. Then Mgy,
is finitely generated and torsionfree (Lemma 3.27 and Theorem 3.8), and so is free.
Choose a basis ¢1,...,¢; € Hom(E,, Ey) of M, and suppose that ¢ = ¢y + -+ - +
iy, with o € Zy. For each 1 < i <, choose a; € Z such that a; = «; (mod "),
and consider the isogeny

Y= la] o g1+ -+ + [a] o ¢y € Hom(E, E»).

Then ¢, = 0 implies that ¢ kills E,[¢"], so ¢ factors through [¢"] (Corollary 3.10),
i.e. there exists A € Hom(E}, Es) such that ¢» = [("] o \. Now A € Mg, and so there
exists b; € Z such that

A= [b1] oy + -+ [b] 0 Py

Since the ¢;’s are a Z-basis of Mg,, we have a; = ("b; for 1 < i < t, so «;
(mod ¢™) for 1 < ¢ < t. Since n was arbitrary, it follows that o; = 0 for 1 <
and so ¢ = 0.

IA
\‘W
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Theorem 3.28 (Tate, Faltings). The natural map
HomK(El, Eg) ® Zg — HOmK(Tg(El), Tg(EQ))

is an isomorphism if K is a finite field (Tate), or if K is a number field (Faltings).

3.9 The j-invariant

Suppose that char(K) # 2 or 3, and let E/K be an elliptic curve. Then the Weierstrafs
model of E can be put in the form F : y* = 2® 4+ ax + b (see Silverman III, §1). Then

j(E) = 0

A g
13 + o2 ©

Theorem 3.29 If Fy ~ FEy, then j(Fy) = j(Es). If j(Ey) = j(E>), then E) ~; Es.

Proof. Suppose that E; ~ E,. Then x, = vz, y, = vz, u € K or K (cf Corollary
3.4). Then ay = u=*a; and by = u %y, so j(E)) = j(E2). Suppose that j(E;) =
j(Es). Then we have

(4a1)?(4a3 + 27b3) = 4aj(4a? + 27b2),
so ajbi = a3b?. If ay, by, ay, and by are all nonzero, then

3 2
-
a9 bg
4

say, i.e. Z—; = u* and Z—; = u5, and so construct an isomorphism using this u.

Exercise. Do the other cases.
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Chapter 4

Elliptic Curves over Finite Fields

Let K =T, and let E/K be an elliptic curve.

Problem. Estimate the number of points in E(K), i.e. estimate the number of
solutions to the equation

y2 + a2y + azy = z° + a2x2 + asx + ag,
with (x,y) € K2

Lemma 4.1 Let M be an abelian group, and let d : M — Z be a positive definite
quadratic form. Then for all ¢, € M, we have

|d(¢p — &) — d(9) — d(¥)] < 2¢/d(¢)d().

Proof. Set L(¢,¢) = d(yp — ¢) — d(¢) — d(v0). Then L is bilinear (since d is a
quadratic form). As d is positive definite, we have, for all m,n € Z,

0 < d(mip — ng) = m2d() + mnL(¥, 6) + n?d(®).
Take m = —L(v, ¢) and n = 2d(¢)); then

0 < d()[4d(¥)d(¢) — L(¥, ¢)2,

and this is enough.
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Theorem 4.2 (Hasse) Suppose that K = F, and E/K is an elliptic curve. Then

[#E(K) —q—1] <2/

Proof. Choose a Weierstraf equation for E/K. Let ¢ : E — E, (v,y) — (z9,y9)
be the ¢ power Frobenius morphism. Now Gal(K /K) is topologically generated by

the ¢ power map on K. Hence if P € E(K), then P € E(K) iff $(P) = P, so
E(K) =ker(1 — ¢). Since 1 — ¢ is separable, we have

LB(K) = #ker(1 - ) = deg(1 - 6).
Thus Lemma 4.2 yields

| deg(1 — @) — deg(¢) — deg(1)| < 24/deg(¢) deg(1),

SO
HE(K) —q—1] <244

Example. (Estimating character sums). Suppose that K = F,, with ¢ odd. Let
f(z) = az® + bx? + cx + d € K[x] be a cubic polynomial with distinct roots in K.
Let x : K* — {£1} be the unique nontrivial character of order 2 (so x(t) = 1 iff
t is a square in K*). Set x(0) = 0; then x is defined on K. Use x to count the
number of K-rational points on the elliptic curve E : y*> = f(x). Each z € K gives 0,
respectively 1, respectively 2 points (z,y) € E(K) if f(z) is a nonsquare, respectively
zero, respectively a square in K. So

HE(K) =14 (X(f(2)+1) =1+q+ Y x(f(z)).

Hence we have

S x(f@)| < 2v4

This is the tip of a vast iceberg, cf for example “Sommes exponentielles,” Astérisque
79 by N. Katz.
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Let K =F,, and set K, to be the unique extension of K of degree n. (So #K, = ¢".)
Let V/K be a projective variety. V' (K,,) := the set of points of V' with coordinates
in K,,.

Definition 4.3 The zeta function of V/K is the power series

[e.o]

ﬂWKﬁrwm<§xﬂmn#§>

n=1

(Here exp(F(T)) := Zfoo PAY for F(T) € Q[[T]] with no constant term.)

’L'

We have
1 dr

#V (K,) = 1) ar"

log(Z(V/K;T))

T=0

Example. Take VV = P". Then each point in V(K,) is given by homogeneous
coordinates [zg : ... : zy]| with z; € K,,, not all zero. Two sets of coordinates give the
same point only if they differ by multiplication by an element of K,*. So we have

qn(N+1) -1 N )
= i=0
Hence
N Tn N
log Z(V/K;T) ) = —log(1 — ¢'T).
So .
Z(VIK:T) = € Q(T).
VIS = G gya =gy - g1 <)
Remark. A similar argument shows that in general, if there are oy, ..., a, € C such

that #V(K,) = £af £ --- £ o for all n € N, then Z(V/K;T) will be a rational
function.
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Theorem 4.4 (The Weil Conjectures) Let K = F,, and suppose that V/K is a
smooth projective variety of dimension n.

(a) Rationality: Z(V/K;T) € Q(T).

(b) Functional equation: There is an integer € such that

1
7 (V/K; ) = +¢" T Z(V/K;T).

T
(c) Riemann Hypothesis: There is a factorization

| B Pl (T) e P2n_1(T>
Z(V/K;T) = Po(T)Po(T) - - - Pon(T)

with each Py(T) € Z[T]. Also Py(T) =1—-T, Po,(T) = 1 — ¢"T, and for each
1<i<2n—1, we have F(T) = [[;(1 — a;;T), cij € C with |ay;| = q'>.

4.1 Proof of the Weil Conjectures for Elliptic Curves
E/K

Recall that we have a map End(E) — End(T,(F)) given by ¢ +— 1. 1, may be
written as a 2 X 2 matrix over Z,, so we may compute det (i), Tr(vy) € Zy.

Proposition 4.5 Suppose that ¢ € End(E). Then det(¢y) = deg(v) and Tr(¢,) =
1 — deg(¢) — deg(1 — ). (So det(t)y), Tr(¢)¢) € Z and are independent of £.)

Proof. Choose a Zs-basis vy, vy of Ty(E). Write the matrix of ¢, with respect to this

basis as
a b
?Z}é - (C d) .

There is a nondegenerate, bilinear, alternating Weil pairing e : Ty(E) x T;(E) —
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To(p) = Ze(1). So we have

deg (¢

e([deg ¥]vy, v2)
(e 0 y(v1), v2)
e(e(v1), Pe(v2))
e
(
(

e(vy,vg)

(&

e(avy + cvy, buy + dvg)
)ad be

e(v,v

)det ”L/)e

€e(v1,v

Hence deg 1 = det 1)y, since e is nondegenerate. For any 2 x 2 matrix A, say, we have
Tr(A) =1+ det(A) — det(1 — A).

Let ¢ : E — E be the ¢'" power Frobenius morphism. Then #F(K) = deg(1 — ¢),
#E(K,) = deg(1 — ¢"). The characteristic polynomial of ¢, has coefficients in Z and
so may be factored over C:

det(T — @) = T? — Tr(¢) T — det(¢¢) = (T — a)(T — 3),

say. Next observe that for each m/n € Q, we have

Y

det (@ B @) _ det(m 2— ony _ deg(m2— ne) >0
n n n
and so det(T — ¢y) has complex conjugate roots. Hence |a| = ||, and so, since
af = det ¢, = deg ¢ = q, we have |a| = || = V4

Now the characteristic polynomial of ¢} is given by det(T' — ¢}) = (T — a™)(T — ("),
S0
BB(K,) = deg(1 — ¢") = det(1— g7) =1 — " — B+ ¢".

Theorem 4.6 Let K =F,, and let E/K be an elliptic curve. Then there is an a € Z

such that
1—aT +qT?

(1-T)(1—qT)

Z(EJK;T) =

Also
Z (E/K; qiT) = Z(E/K;T),
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and 1 —aT + ¢T% = (1 — aT)(1 — BT), with |a| = |8] = /7.

Proof. We have

o Z(E/ K1) = 3(#B)) -

Z (1—am— ﬁ” +q" )T
=1
—log(1 — T) +log(1 — aT) + log(1 — BT) — log(1 — ¢T),

w0 (1—aT)(1 — BT)
(1-T)1—4qT)

Z(BJK;T) =

Thus
a=a+B="Tro) =1+q— deg(l— ) € Z.

[This is € = 0 in the functional equation
1
Z (V/K; —T) = +q" T Z(V/K:;T),
qTL

where dim V' = n.]

Remark. Suppose we make a change of variable T'= ¢~°. Then

. 1— aq—s + q1—25
Ceyx(s) == Z(E/K;q") =

(I—g=*)(1—q'=*)

The functional equation becomes (g/k(1 —s) = (r/x(s), and (g/k(s) = 0 implies

that |¢°| = /g, so R(s) = 1/2.

Question. Suppose E/Q is an elliptic curve y* = ax® + bx + ¢, with a,b € Z.
We can look at E/F,. This is an elliptic curve for all but finitely many p. Let
¢ : E/F, — E/F, be the Frobenius morphism. For any ¢ # p, we can look at
o0 : TY(E/F,) — T,(E/F,). ¢; has complex conjugate eigenvalues «, and (,, say

(independent of ¢). We've just shown that |a,| = |5,| = 1/2. So

a, = p1/26i9p’ B, p1/2

How do the angles 6, vary with p?
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4.2 Equidistribution

Suppose E/Q is an elliptic curve without complex multiplication, and let p be a prime
such that E/F, (the reduction of E modulo p) is nonsingular. Theorem 4.2 (Hasse)

implies that [#E(F,) —p— 1] < 2,/p, i.e.

p+1-2yp < EF,) <p+1+2p.

So we may write E(F,) = p+ 1 — a,, with |a,| < 2,/p. p+1is the “main term,” and
a, is the “error term.” We may write a, = 2,/pcos @, with 6 € [0, 7].

Question. How does 0, vary with p?

Suppose we are given a sequence {z,},>1 in a compact space X with probability
measure fi.

Definition 4.7 Say that {x,} is equidistributed with respect to p if for all contin-
uous functions f : X — C, we have

N

[ = Jim 3 ()

=1

[It suffices to check this on a set of test functions {f;} whose C-span is uniformly
dense.|

Suppose that G is a compact group equipped with a Haar measure (so G has total
mass 1). Let X = {conjugacy classes in G}, and write p for the Haar measure on X
induced from the Haar measure on G. There is a bijection between continuous func-
tions on X and continuous central (class) functions on G given by [, f du = [, f dg.

We can take our uniformly dense set of functions {f;} to be functions of the form
g — TrA(g), for A an irreducible representation of G (Peter-Weyl Theorem). We

have
/]ld,uzl, /Tr(A)d,u:()
X b
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if A # 1 is irreducible (via orthogonality relations for characters).

Weyl Criterion for Equidistribution. For all irreducible nontrivial representa-
tions A,

Z Tr(A(z;)) = o(N).

4.3 The L-Function Method

Suppose that GG is a compact group, and let N > 1 be an integer. Suppose that for
each prime p with p { N, we are given a conjugacy class 6, of G. When is {6,},n
equidistributed in X7 See Serre’s book Abelian (-adic Representations and Elliptic
Curves (1968).

For each nontrivial irreducible representation A of GG, form the L-function

1
Hed = =g

This converges for R(s) > 1.

Theorem 4.8 (Serre’s book). For A as above, suppose

(1) L(s,A) has an analytic representation on an open set contained in R(s) > 1,
and

(2) L(s,A) is nowhere zero on R(s) = 1.
Then {6, },n is equidistributed in X.

Theorem 4.9 (Deligne, Weil II). In the Serre setup, (1) implies (2) with at most one
exception. This exception, if it exists, is a 1-dimensional character A : G — {£1}.
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Corollary 4.10 There are no exceptions if either GG is connected or if for all A : G —
{£1}, the map p — A(6,) is a Dirichlet character (i.e. a character of (Z/NZ)*).

Examples.

(a) Dirichlet (1837). There exist infinitely many primes in arithmetic progressions
unless there clearly aren’t. Dirichlet introduces Dirichlet L-functions L(s, x)
and prove that L(1,x) # 0 if x # 1.

(b) Chebotarev (1915) Let K/Q be Galois, with G = Gal(K/Q). Consider the
map sending p to the conjugacy class of Frob, in G. Then {Frob,}isc(x/q) is
equidistributed in X.

(c) Early 1960’s: Back to our original elliptic curve example. Salo does computer
experiments. In 1963 Tate writes down the Sato-Tate Conjecture.

Sato-Tate Conjecture. Let £/Q be an elliptic curve without complex multiplica-
tion. For almost all p, we know that E(F,) = p + 1 — a,, where a, = 2,/pcos@), for
some 6, € [0, 7]. Then {6,} is equidistributed in [0, 7] with respect to the (Sato-Tate)
measure % sin? 4 d#.

Each conjugacy class in G := SU(2, C) contains a unique element of the form

e’ 0
0 e )"

The Haar measure on the set X of conjugacy classes is %sin2 0 df (cf e.g. Brocker
and tom Dieck, Representations of Compact Lie Groups).

(d) (2006) Clozel, Harris, Shepherd-Barron, Taylor: The Sato-Tate Conjecture
holds for E/Q with j(E) ¢ Z. They prove this via the L-function method.
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4.4 The Hasse Invariant and the Endomorphism Ring

Theorem 4.11 Suppose that K is a perfect ﬁeld with characteristic p > 0, and let
E/K be an elliptic curve. Let ¢, : £ — E®) and é» : E®) — E be the Frobenius
map and its dual.

(a) The following conditions are equivalent:

(i

) E,r = O for one (and therefore all) r > 1.

(ii) ¢, is purely inseparable for one (and therefore all) r > 1.
i)
v)

(iii) The map [p] : £ — E is purely inseparable, and j(£) € Fp.

End(F) is an order in a quaternion algebra.

(i

In this case, we say that E is supersingular or has Hasse invariant 0.

(b) If (a) does not hold, then E, ~ Z/p"Z for all r > 1. In this case, if j(E) € F,,
then End(FE) is an order in an imaginary quadratic field. If j(E) ¢ F),, then
End(E) ~ Z. In this case, we say that E is ordinary or has Hasse invariant 1.

Proof.
(a) We first show (i) iff (ii). Recall that ¢, is purely inseparable (Theorem 2.5). So

deg,(¢,) = deg,[p"] = (deg,[p])" = (deg, ¢)"

Thus ) )
#E, = deg,(¢,) = (deg, ¢)".

Thus #E,- = 1 iff deg, ngST = 1, as required.
We now show (ii) implies (iii). Since ¢ is purely inseparable, and (ii) implies
that ¢ is purely inseparable, we see that [p] = ¢ o ¢ is also purely inseparable.

Now recall (Theorem 2.5) that every map 7 : 7 — C3 between smooth curves
over a field of characteristic p factors as

Cl C12
qu)
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where ¢ := degs(f), 9 is the ¢*" power Frobenius map, and A is separable.
Applying this to ¢ : E?®) — E, we see that we have a diagram

) ¢ E
S A
)

E@?

E®

where ® is the p'* power Frobenius map on E® and \ is of degree 1. Hence A
is an isomorphism, and so j(E) = j(E®)) = j(E)”, so j(E) € Fpe.

We now show that (iii) implies (iv). The proof proceeds via contradiction.
We first observe that if End(E) is not an order in a quaternion algebra and
K := End(F)®7Q, then K = Q or K is an imaginary quadratic field. Suppose
that E’ is isogenous to F, with ¢ : E — E’. We have ¢ o [p] = [p] 0%, and since
[p] is purely inseparable on E, [p] is also purely inseparable on E’. (Compare
inseparable degrees of both sides.) This in turn implies that j(E’) € F2, and so
there are only finitely many possibilities for E’. As there are only finitely many
End(E’)’s, we may choose a prime ¢ € Z such that ¢ # p and ¢ remains prime
in End(E") for every E’ isogenous to E (exercise). Now E[(‘| ~ Z/('Z x 7./ ‘7,
so there exists a sequence of subgroups ®; C &y C -+ C E with ®; ~ Z/('Z for
each i > 1. Set E; := E/®;, so E; is isogenous to E. Then there exist integer
m and n such that E,,,, ~ E,, with 7 : ., — E,,, say. Then we have

E,. A E,,

Em+n

where ker(\) ~ Z/("Z (i.e. ker(\) ~ ®,,1,,/Py,). Since ¢ is prime in End(E,,),
it follows (by looking at degrees) that A = w o [("/?], v € Aut(E,,), and n is
even. This is a contradiction, because ker([¢"/?]) is never cyclic for any n > 0.
Hence (iii) implies (iv), as claimed.

We now show that (iv) implies (ii). Our strategy is to show that if (ii) is
false (so ¢, is separable for all 7 > 1), then End(E) is commutative (which
contradicts (iv)). Suppose therefore that ¢, is separable for all r > 1. Then
Ey ~Z/p"Z for all r > 1 (since (i) iff (ii)) and T,(E) ~ Z,. We claim that the
natural map End(E) — End(7,(E)) is injective. For suppose that ¢» € End(FE)
lies in the kernel of this map. Then ¢(E,-) = 0 for all » > 1, so # ker(¢)) > p”
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for all » > 1, so ¢ = 0. Since End(7,(£)) ~ End(Z,) ~ Z,, we deduce that
End(E) is commutative, as desired.

(b) If (a) does not hold, then (i) above implies that E, ~ Z/p"Z for all r > 1.
Suppose that j(E) € F,, and that (a) does not hold. Then j(E) € K, K is
a finite field, and there exists an elliptic curve E'/K with E' ~ E (cf Silver-
man [II, Proposition 1.4). Suppose #K = p"; then ¢, € End(E’) ~ End(E).
If &, € Z C End(E’) ~ End(FE), then ¢, = [£p™/?], and r is even (compare
degrees!). Then #E}’WZ = deg, ¢, = 1, which is a contradiction. Hence ¢, ¢ Z,
and so End(E’) is strictly larger than Z. Therefore End(E’) is an order in an
imaginary quadratic field (since by assumption, it is not an order in a quater-
nion algebra).

4.5 Interlude: Legendre Normal Form

Definition 4.12 We say that a Weierstral equation is in Legendre form if it can
be written as y? = z(zx — 1)(x — \).

Theorem 4.13 Let K be any field with char(K) # 2.

(a) Every elliptic curve E/K is isomorphic over K to an elliptic curve Ej : y? =

x(z —1)(z — ) for some \ € K, with A # 0, 1.
: $(A2_
(b) J(Ex) = S

(¢) The map K \ {0,1} — K given by A — j(E)) is surjective. It is

six-to-one if j # 0 or 1728,
two-to-one if j =0,
three-to-one if j = 1728.

Proof.
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(a) If char(K) # 2, then E has a Weierstrak equation of the form y? = 423 + byz? +
2047 +Dbg. The transformation z +— x, y — 2y yields y? = (z—e;)(x—eq) (v —e3),
e1,e2,e3 € K. The ¢;’s are distinct since A = 16(e; —es)?(e; —e3)?(ea—e3)? # 0.
Now apply the substitution  — (e; — e3)z’ + e1, y — (e2 — €1)*?y to obtain
an equation in Legendre form with A\ = % €K, A#0or 1.

(b) This follows from a calculation.

(c) Suppose j(E)) = j(E,), say. Then E\ ~; E,,, and so the Weierstral equations
of these curves in Legendre form are related by z +— u?z’ + 7, y — u® + ¢/,
Equating yields

oz — 1)z — ) = <x+%> (xﬂu_gl) (HT;QA).

There are six ways of assigning the linear terms. These yield the possibilities

1 1 AoA—1
A=, 1 =X .
/"LE{7A7 71_>\7A_17 A }

Thus A — j(FE,) is six-to-one unless two or more of the values for y coincide.
The only possibilities are A = —1, 2, %, in which case j(E)) = 1728, and the set
has three elements, or A> — X\ + 1 = 0, in which case j(F\) = 0, and the set has
two elements.

Question. How can we tell when an elliptic curve is supersingular?

Theorem 4.14 Suppose K is a finite field with char(K) > 2.

(a) Let E/K be an elliptic curve with Weierstrak equation E : y* = f(x), where
f(z) € Klz| is a cubic with distinct roots. Then FE is supersingular iff the
coefficient of 2P~ in f(z)®~1/2 is zero.

(b) Let m = 3(p— 1), and set
m 2
Hy(t)=3" (7) .
i=0
Suppose A € K with A # 0 or 1. Then the elliptic curve E : y*> = z(z—1)(z—\)
is supersingular iff H,(\) = 0.
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(¢) Hp(t) has distinct roots in K. There are (up to isomorphism) exactly | & | +¢,
supersingular elliptic curves in characteristic p, where

0 ifp=1 (mod 12),
ep=141 ifp=>bor7 (mod 12),
2 ifp=11 (mod 12).

Proof.

(a) Set ¢ = #K. If x : K* — {£1} is the unique nontrivial character of order 2,
then, setting x(0) = 0, we have

HEK)=1+q+ > x(f(z)) =1+ fla)s

zeK rzeK

in K. (Since K* is cyclic of order ¢ — 1, x(z) = 2@/ for all z € K*.) Since
K™ is cyclic of order ¢ — 1, we have

i —1 if(q—l)“,
x;f_{o if (q—1)1i.

Now f(z) has degree 3, so the only nonzero termin »___, f(2)1/% comes from
2971, So if A, is the coefficient of 297 in f(x)4~V/2 then #F(K)=1— A, in
K. Now if ¢ : E — E is the ¢® power Frobenius endomorphism, we have

#E(K)=deg(l-¢)=(1-9)(1—-¢)=1-(¢+¢) +q=1—a+q,

say, whence a = A, in K. So A, =0 in K if and only if « = 0 (mod p) (since
a is an integer). Now ¢ = [a] — ¢, so a = 0 (mod p) iff ¢ is separable iff E is
supersingular. Hence A, = 0 in K iff F' is supersingular. We claim that A, =0
in K iff A, =01in K. For we have

Fla)® 02 = p ()02 f(x)(p—m)ﬂ _

Equating coefficients (using the fact that f(z) is a cubic!) yields A1 = A, -
AII;T, and this implies the claim via induction on r.

23



(b)

We apply (a). Recall that m = L(p — 1). We have to calculate the coefficient
of zP7 in [x(z — 1)(x — )\)](p_l)?z, which is the coefficient of 2P~Y/2 in (x —
1)P=D72(z — X\)P=D/2 ) which is

> ("M)er(,) e = e

1=0

() ¥ = o,

)

which implies the result.

In order to show that H,(t) has simple roots, we introduce the differential

operator
2

d d
7 = 4t(1 =) +4(1 -2 — 1.

A routine calculation yields

2t =r3 o207 ¢

FH,(t) =0  in K[t]. ()

Suppose H,(t) = (t — a)"f(t), say, with 2 < n < m and f(a) # 0 in K.
Substituting this expression into () and simplifying yields 4a(a — 1) = 0, so
a=0or 1. We have H,(0) =1 and

H,y(1) = i (”Z)Q = (2;:) - Ei:f))g' 20 (mod p).

=0

Hence the roots of H,(t) are simple, as claimed. Each root A of H,(t) yields an
elliptic curve Ey : y* = x(z — 1)(z — \).

If p = 3, then H,(t) = 1+ t, so there is exactly one supersingular curve in
this case, with j-invariant j(E_;) = 1728. Suppose therefore that p > 5. Recall
that the map A\ — j(E)) is six-to-one if j # 0 or 1728, two-to-one if j = 0, and
three-to-one if j = 1728. Furthermore, if H,(A\) = 0 and j(E)) = j(£y), then
H,(X) = 0 also, since £\ ~ Ey and the roots of H,(t) consist precisely of all
values of A for which F, is supersingular. For each number [, say, define

Ep(ﬁ) =

1 if B is a supersingular j-invariant over [,
0 if 8 is an ordinary j-invariant over I,
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Then the number of supersingular elliptic curves in characteristic p > 5 is

1 -1 -1 2 1
6 (pT — 2€p(0) — 3€p(1728)) —|—8p(0)—|—8p(1728) = %+§€p(0)+§€p(1728)-

We have to determine for which primes p > 5 the curve F : y? = 23 + 1
(with j-invariant 0) is supersingular. Apply part (a): the coefficient of zP~! in
(z® + 1)P~D/2 ig

0 if p=2 (mod 3) — supersingular,
(gjgg) Z0 (modp) ifp=1 (mod 3)— ordinary.

We now have to determine for which primes p > 5 the curve E : y? = 2% + o

(with j-invariant 1728) is supersingular. The coefficient of zP~! in (23 4-2)®~1/2

is equal to the coefficient of =1/2 in (22 + 1)®P=Y/2 which is

0 if p=2 (mod 3) — supersingular,
(gjgﬁ) #Z0 (modp) ifp=1 (mod4)— ordinary.
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Chapter 5

Elliptic Curves over C

Basic Facts. We have E(C) = C/A, a Riemann surface of genus 1. Over C, every
lattice gives rise to an elliptic curve. (In higher dimensions, it’s possible to have lat-
tices that give rise to abelian varieties that are not algebraic.)

Definition 5.1 Fix a lattice A C C.

(a) Elliptic functions (relative to A) are meromorphic functions on C/A, or mero-
morphic functions on C, periodic with respect to A. The set of elliptic functions

is denoted C(A). This is a field.

(b) A fundamental parallelogram for A is a set P = {a + tjw; + tawy : 0 <
t1,ty < 1}, where a € C, and w; and wy are a basis of A.

Theorem 5.2 Suppose that f € C(A).

1) If f has no zeros or poles, then f is constant.

(1)

(2) Yecsnordu(f) = 0.
(3) Puecyaresu(f) = 0.
(4) Y yec/n wordy(f) € A.

2

Proof.
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(1) If f has no poles, then it is bounded on the fundamental parallelogram. Hence
f is a bounded entire function, and so is constant. If f has no zeros, then 1/f
has no poles, and so we just argue as above.

The proofs of the remaining assertions follow via applying the residue theorem to
suitable functions on P.

(2)

Z ord,(f) = L /') dz = 0.

weC/A 2mi Jop f(2)

1
S resu(f) = %/MD () dz = 0.

weC/A
(4)
1 /
Z w ord,,( — zf (2) dz
weC/A 2 or [f(2)

1 w1tws2 Z

2_ (/ + / /leer / ) Z

w1 / w2
'z 'z dz.
2m o f(2) 27m f(2)
Now use the fact that e.g. 2 — wl ’;(z dz is the winding number around 0 of the

path [0,1] — C given by ¢ f(twl) which is an integer, since f(0) = f(w).

Definition 5.3 The order of an elliptic function f is the number of poles (counted
with multiplicity) inside any fundamental parallelogram.

Corollary 5.4 Any nonconstant elliptic function f has order at least 2.

Proof. Suppose that f has a single simple pole. Then Theorem 5.2(3) implies that
the residue of f at this pole is zero, so f(z) is holomorphic. This implies that f(z) is
constant.
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Definition 5.5 Let A be a lattice. The Weierstrafs p-function relative to A is defined

by the series
1 1 1
@('Za ) 22+ E :((z—w)2 w2)

wEA
w#0

This is periodic with respect to A. It has double poles at the lattice points and no
other poles. @'(z;A) = =23 .\ (z—;w):“

The Eisenstein series of weight 2k is

G2k<Q) = Zw_%.
weA
w#0

Lemma 5.6 )
o(z) ==+ Z (n 4+ 1)Gpi22™.
nneglgn

22

Proof. We have
1 1 1 1 1 z\"1
(z—w)z_ﬁzﬁ<(1_£)2_1>:E(nz>1<;> )
1 1 n—1 1 n
p(z):;—i—z anﬂ nz :;—i— Z(n+1)Gn+lz .

1 n even
n= n>0

Thus
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Next, we observe that

(2) =272+ 3G 2%+ -,
o(2)? = z7* 4 constant + - - - .
)P =24 x 2+
O (2) =234 %-z2+---.
022 =420+ 5. 272 ...
Look at
f(2) = @' (2)* — 4p(2)® + 60G4p(2) + 140Gs.

This function f(z) is holomorphic in a neighborhood of z = 0, and f(0) = 0. Since
f is elliptic and holomorphic away from A, it follows that f is a holomorphic elliptic
function and is therefore identically zero. So

©'(2)? = 4p(2)* — 60G4p(2) — 140Gs.

In the future we will write g for 60G4 and g3 for 140Gs.
Proposition 5.7 The equation 42° — gax — g3 has only simple zeros.

Proof. Observe that ¢/(z) is an odd function. So if w = A, w & A, then
o (w) = —p'(—w) = —¢'(w), and so ¢'(w) = 0. It therefore follows that 423 — gox — g3
has zeros at © = p (4), v = p (%), and z = p (2122). We now show that these
three values of z are distinct. The function f(z) := p(z) — p (%) has a double pole
at z = 0, and a double zero at z = 4. Hence (f) = 2 (%) —2(0), so f (“’—22) #0

and f (%) #0,ie @ (%) #* (%) and @ (%) #* (%) A similar argument
shows that o (£2) # p (2322).

Consequence. The equation E : y? = 423 — gox — g3 defines an elliptic curve over

C.
Theorem 5.8 C(A) = C(p(2), ¢'(2)).
Proof. Suppose that f(z) € C(A). Then f(z) = 3(f(2) + f(—2)) + 3 (f(2) — f(—=2)),

where the first term is even and the second term is odd. Observe that if g(z) € C(A)
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is odd, then p'(z)g(z) is even, and so we are reduced to considering even functions.

We claim that if 2w € A, then ord,(f) is even. For f(z) = f(—2), so fO(z) =
(=1) f@(2) for all i > 0. Now if 2w € A, then f®(w) = f@(—w) for all 4, and so we
deduce that f®(w) = 0 for all odd 4. Hence ord,,(f) is even, as claimed.

We therefore see that if f is an even function, then (f) = >, n,((w)+(—w)), ny € Z
for all w. Now

div (H(@(z) - @(U)))”w) =D 1u(=2(0) + (w) + (~w)) = (9(2)),

w

say. Hence f(z) and g(z) have exactly the same zeros and poles except possibly at
z = 0. But now Theorem 5.2(2) implies that ordy f(z) = ordg g(z) also. Therefore
(f) = (9), and now the result follows.

The map ¢ : C/A — E(C) C P?(C) given by z — [p(2), ¢/(2),1] is an analytic map.

¢ is surjective. For any x € C, the function p(z) — x has zeros (since p(z) has a
double pole). Thus there exists a z with p(z) = . Then (p(2), ¢'(2)) = (z, £y), and

(p(=2),¢'(=2)) = (z,Fy).

¢ is injective. Suppose ¢(z1) = ¢(z2). If 221 € A, then p(2) — p(21) has order 2 and
has zeros at z;, —z1, and zo. Hence z; = £25 (mod A). Therefore ¢'(21) = ¢'(22) =
@ (£21) = £¢/'(21), 80 21 = 25 (mod A) (since ¢'(z1) # 0 from the proof of Theorem
5.8). If 2z € A, then p(z) — p(z1) has a double zero at z;, and vanishes at zo. So
29 = z1 (mod A).
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Chapter 6

Elliptic Curves over Local Fields

6.1 Formal Groups

The formal group of an elliptic curve (motivating example). Consider the
Weierstraf equation y? + a1zy + asy = x> + asx?® + asx + ag. Make the change of
1

variables z = —%, w = —. (Soy =—L, o= Z) This yields

w = 2%+ aj2w + ap2Pw + asw? + agzw® + agw® =: f(z,w).

Now substitute this equation for w into itself repeatedly to obtain a formal power
series. We obtain w = 23(1 + Az + Ay2? + --+), where A, € Zlay,...,ag). By the
above procedure (assuming everything makes sense!), we have constructed w(z) sat-
isfying w(z) = f(z,w(z)). We may do this more precisely by using Hensel’s Lemma:

Lemma 6.1 (Hensel’s Lemma) Suppose that R is a ring which is complete with
respect to an ideal I. Let F'(w) € R[w] be a polynomial, and suppose that a € R
satisfies F'(a) € I™, F'(a) € R* (for some n > 1). Then for any a € R satisfying
a = F'(a) (mod ), the sequence wy = a, W11 = Wy, — % converges to an ele-
ment b € R satisfying F'(b) = 0 and b = a (mod I™). (b is uniquely determined if R

is an integral domain.)
Proof. See Silverman IV, Lemma 1.2 or Frohlich-Taylor, page 84.
Now define a sequence of polynomials f,,(z, w) by fi(z,w) = f(z,w) and f41(z,w) =
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fm(Z,f(z,w))_ Set
w(z) = lim f,,(2,0) € Zlay, . .., ag][[Z]]

m—00

(assuming that this makes sense — see below).

Proposition 6.2

(a) The above procedure yields a power series

w(z) = 22(1+ Az + Ap2® +--+) € Zay, . . ., ag][[2]].

(b) w(z) is the unique power series satisfying w(z) = f(z,w(z)).

(c) Suppose that Zlai,...,as] is made into a graded ring by assigning weights
wt(a;) =i. Then A, is a homogeneous polynomial of weight n.

Proof.

(a) and (b) Apply Hensel’s Lemma with R = Z[ay, . .., a¢)[[2]], I = (2), F(w) = f(z,w)—w,
a=0,and a=1.

(c) Use induction, starting with the fact that f(z, w) is homogeneous of weight —3.

Now we may write down Laurent series for z and y:

z 1 a

z(z) = o) = ;—;—a32+(a4+a1a3)z2+-~ ,
—1 —1 aq a9
y(Z): w(Z) :?+?+?+a3+(a4+a1a3)z+--- .
The coefficients of z(z) and y(z) lie in Zay, . .., ag]. For the invariant differential, we
have p y 5
—9, 3 4. 1
o) | _del@)jdz 22 b gt ] [
dz 2y +ayx+a3 —2z34--- 2
and

w(z) dy(z)/dz 3t
dz 3224 2ax+as—ary x4+
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Hence % € Zlay, . .., ag)[[z]] also.

Now suppose that a,...,a6 € Z,. Then, for all z € pZ,, we have (z(z),y(2)) €
E(Q,). So we have a map pZ, — E(Q,). (This is not a group homomorphism.) We
would now like to define an addition:

(21, w(z1)) + (22, w(22)) = (23(21, 22), w(23))-

(For brevity, we write w; = w(z1) and wy = w(z2). We will allow z3 € R][[z1, 25]] for
some ring R.) (Think of all of these as points on the curve E(R|[[z]]). This is what
the addition actually means.) We apply the chord-tangent method: The slope of the
line joining (z1,w(21)) and (22, w(z2)) is

Wy — W1 2y — 27

A= =>» A, :
29 — 21 Z ( 29 — 21 )

n>3

Substituting into the Weierstral equation gives a cubic in z whose third root is
Zé = Zé(zla 22) € Z[a'la s ,GGH[Zl, 22]]

The inverse of a point (z,w) will have z-coordinate given by (recall z = —z/y)

x(z)

y(z) + a1x(2) + ag

i(z) =

€ Zlay, . .., ag)[[#]]-

Finally, we obtain
23 = F(z1,20) = i(25(21, 22)) € Z]ay, . .., ag)[[21, 22]]-
From the properties of addition on F, it follows that F'(z1, z5) satisfies the following:
o [(z1,29) = F(29,21) (commutativity)
o (21, F(29,23)) = F(F(z1, 22), 23) (associativity)
o F(z,i(z)) =0 (inverse).

So F(z1,29) is a “group law without any elements.”
Let us now pass to the general case:
Definition 6.3 A one-dimensional formal group over a ring R is a power series

F € R][x,y]] satisfying
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1. F(X,Y) = X+ Y+ higher order terms.

(X,

2. F(X,Y) = F(Y, X).
3. F(F(X,Y),Z) = F(X,F(Y, Z)).
4. F(X,0) = F(0,X) = X.

5. There exists i(X) € R[[X]] such that F(X,i(X)) =0.

Examples.
e G, F(X)Y)=X+Y.
¢ G, FIX)Y)=(1+X)(1+Y)—-1=X+Y + XY.

e [: the formal group of an elliptic curve F.

Definition 6.4 A homomorphism between two formal groups F' and G is a power
series ¢ € R[[T]] (with no constant term) satisfying

G(p(X), oY) = o(F(X,Y)).

We say that F' and G are isomorphic over R if there are homomorphisms f : F' — G
and g : G — F defined over R satisfying f(g(T")) = g(f(T)) =T.

Example. Define [m|(X) : FF — F by [m](X) = F(X,[m — 1](X)) for m > 0 and
[=m](X) = i([m](X)).

Proposition 6.5 Let F' be a formal group over R, and suppose that m € Z. Then
(a) [m](T) = mT+ higher order terms.

(b) If m € R*, then [m] : F' — F is an isomorphism.

Proof.
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(a) This follows by induction.

(b) This follows from the following fact: If f(X) € R[[X]] with f(0) = 0 and f'(0) €
R*, then there exists g(X) € R[[X]] such that g(f(X)) = X. To show existence,
we inductively construct a sequence of polynomials g,(X) € R[X] such that
f(gn(X)) = X (mod X™1) and g,11(X) = ¢g(X) (mod X™™). Then g(X) :=
lim,, . gn(X) exists and satisfies f(g(X)) = X. Set a = f/(0) € R*, and take
g1(X) = a ' X. Suppose we've constructed g, 1(X). We seek A\ € R such that
gn(X) = gn-1(X) + AX™ satisfies the desired property:

f(gn(X)) = f(gna(X) +AX")
= f(gp_1(X)) + adX™ (mod X"*1)
=X +aX"+aAX" (mod X"

for some a € R, via our inductive hypothesis. So we can take A = —aa™! € R
(remember that a € R*!). It now follows that g(X) exists. Now f(g(X)) = X,
so g(f(g(X))) = g(X) in R[[g(X)]], so g(f(X)) = X. To show uniqueness, note
that if f(h(X)) = X, then g(X) = g(f(h(X))) = (g o f)(h(X)) = h(X). So
g(X) is unique.

Suppose now that R is a complete local ring with maximal ideal m and residue field
k. Let F' be a formal group over R. We may endow m with a new group structure
via F as follows:

Definition 6.6 The group law associated to F' is the set m endowed with the fol-
lowing operations: addition x @r y = F(z,y) for x,y € m, and inverses Spx = i(z)
for z € m. The power series F'(x,y) and i(z) converge for z,y € m (since R is com-
plete). Hence m endowed with this structure is a group. (We often write F'(m) for
this group.)

Examples.
(a) Gu(m) is m with the usual addition law. There is an exact sequence
0— Gu(m) — R — k — 0.

(b) Gy, (m) is the group of l-units of R with the usual multiplication law. There is
an exact sequence

~

1 - Gp(m) - R -k — 1.
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(¢) Let K be the field of fractions of R, and let £ be the formal group of an elliptic
curve /K. Then there is a natural map m — E(K) given by z — (z(2), y(2)).
This yields a homomorphism E(m) — E(k). There is often (but not always!)
an exact sequence

A

0— E(m) — E(K) — E(k) — 0.

Proposition 6.7
(a) Suppose n > 1. Then the natural map

F(m") m”
—

induced by the identity on sets is an isomorphism.

(b) Suppose that char(k) = p. Then if p t m, F(m) has no nontrivial m-torsion.

Proof.

(a) For x,y € m", we have x ®ry = F(z,y) = x + y+ higher order terms = z + y
(mod m?").

(b) Suppose that z € F(m) satisfies [m](x) = 0. Since m is prime to p, we have
m ¢ m, and so [m| : F(m) — F(m) is an isomorphism. Hence z = 0.

Definition 6.8 A differential on a formal group F' is an expression of the form
P(T)dTl' =w(T) € R[[T]] dT.
An invariant differential is one satisfying w o F/(T,5) = w(7T), i.e.
P(F(T,S))Fx(T,S)dTl = P(T) dT.

(Fx(T,S) is the partial derivative with respect to the first variable.) We say that
w(T') is normalized if P(0) = 1.
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Example. Suppose that E/R is an elliptic curve, and let w = 2y+ad1—zx+a3' Then

w(z) =1+ -+ € R[[2]]. This translates into an invariant differential for the formal
group E.

Lemma 6.9
(1) Fx(0,7)~! dT is an invariant differential on F.
(2) If P(T) dT is an invariant differential on F', then P(T) = P(0)Fx(0,7)~! dT.

Proof.

(1) Erom the associative law, we have F(F(U,T),S) = F(U,F(T,S)). Taking -
gives
Fx(F(U,T),S)Fx(U,T) = Fx(U, F(T, S)).

Now setting U = 0 yields
Fx(T,S)Fx(0,T) = Fx(0,F(T,S)).

We set P(T)* = Fx(0,T) and P(F(T,S))™! = Fx(0, F(T,S)). This just says
that F'(0,7)~" dT is an invariant differential.

)
(2) We have P(F(T,S))Fx(T,S) = P(T). Setting T = 0 gives P(S)Fx(0,S5) =
P(0), ie. P(S) = P(0)Fx(0,9)7"

Corollary 6.10 Suppose that F' and G are formal groups over R, with normalized
invariant differentials wp(7") and wg(7T'), respectively. Let f : F' — G be a homomor-
phism. Then wg o f = f/(0)wp

Proof. We first observe that wg o f is an invariant differential on F":

wg o f(F(T,S)) = wa(F(f(T), f(5))) = wa o f(T).

Lemma 6.9 implies that wg o f = awp for some a € R, so a = f’(0) (compare initial
terms).
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Corollary 6.11 Suppose that F' is a formal group over R, and let p be a ratio-
nal prime. Then there exist f(7),¢(T) € R[[T]] with f(0) = ¢g(0) = 0 such that

pI(T) = pf(T) + g(T7).
Proof. Let w(T") be the normalized invariant differential on F'. Proposition 6.7(a)
implies that [p]'(0) = p. Thus Corollary 6.10 implies that

pw(T) =wo [p(T) = (1+---)[pI'(T),

so [p]'(T) € pR[[T]] since 1+ --- € R[[T]]*. Hence, for any term aT™ of the power
series [p](T"), we have either a € pR or p | n.

Definition 6.12 Suppose that F' is a formal group over R, and let K be the field of
fractions of R, with characteristic 0. Let

A (T) = /FX(O,T)—1 dT

(formal integral), i.e. if wp(T) is the normalized invariant differential on F, then

Ae(T) == [wr(T).
Proposition 6.13 A\p(F(S, 7)) = Ap(S) + Ar(T).

Proof. Let wr be the normalized invariant differential on F'. Then wg(F(T,S)) =
wr(T), so integrating with respect to T', we have A\p(F(S,T)) = Ap(T) + f(S), where
f(S) € K[[S]]. Setting T = 0 gives Ap(S) = Ar(0) + f(S) = f(9).

Ar is called the formal logarithm of F. Note that Proposition 6.13 implies that
Ar 1 F'— G, is a homomorphism of formal groups over K, since A\p € K[[T]].

Definition 6.14 Observe that Ap(T) = T+-- -, so Ap is a formal group isomorphism
over K. We write exp for the inverse of A\, so expy is the unique power series sat-
isfying expp oAp = Ap o expp = 1 (cf the proof of Proposition 6.7(b)).
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Theorem 6.15 Ap (7)) converges on m and expy(T") converges on m", where n > %.
(Here v(p) denotes the largest integer such that p € m*®.) Also expy(T), \p(T) :

m"em”ifn>z(fpi.

Corollary 6.16 F(m™) = m" if n > %.

Let K be a finite extension of Q,, and v a valuation on K. Let R be the ring of
integers of K, m the maximal ideal of R, 7 a uniformizer in m, and k¥ = R/m the
residue field.

Let E/K be an elliptic curve with Weierstraf model 3> +ayzy+asy = 2°+asr®+asz+
ag. Since char(K) # 2 or 3, we may put this equation in the form E : y? = 23+ Az + B,
with distriminant A = —16(4A% 4+ 27B?). E is nonsingular iff A # 0.

Definition 6.17 A minimal model of E/R is a model of E (with all coefficients in
R) such that v(A) is minimal.

Proposition 6.18 A minimal model of £/R is unique up to isomorphism over R.

Proof. Suppose E; and F, are minimal with F; NLK E5. Then the isomorphism

must be of the form = — w?z +r, y — v’z + sv +t, u € K* (Corollary 3.4). Now
under this transformation, A — u*2A. So if E;/R and E,/R are both minimal,
then v(A;) = v(Ay), and u € R*. This implies that r,s,¢ € R (see transformation

formulae in Silverman III 1.2). Hence £} NLR Es.

6.2 Reduction

Suppose that E/K is an elliptic curve with a given minimal Weierstral equation.
Then we may reduce the coefficients of this equation (mod 7); this gives us a (pos-
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sibly singular) curve over the residue field k via
E: Y+ ayry + agy = o + G 4 agx + ag.

Suppose P € E(K). Then we may write P = [z, Yo, 20] With zo,%0,20 € R (and
at least one of xo,%0, 20 € R*). So we have a reduction map E(K) — FE(k) given
by P = [xg, Yo, 20] +— P = [Zo, Jo, Z0]. Let Ens(k) be the set of nonsingular points
of E(k). This is a group (direct check; see e.g. Silverman III, Proposition 2.5). We
define Fy(K) = {P € E(K) : P € E,,(k)} and E\(K) = {P € E(K) : P = O} (the
kernel of reduction).

Proposition 6.19 There is an exact sequence of abelian groups

0— Ey(K) — Ey(K) — E,s(k) — 0.

Proof. First observe that reduction yields a group homomorphism, since if P, Q) €
E,(k), the line ¢ through P and Q intersects the curve again in R € E, (k).
Now we show surjectivity on the right. Suppose (Z,7) € En(k), and let f(z,y) =
y? + a1xy + azy — 3 — asx? — asx — ag = 0 be a minimal Weierstrak equation for
E. Then g—ﬁ(:i,gj) and g—;(:ﬁ,gj) are not both zero, since the point (Z,y) is nonsin-
gular. Suppose that %(f,gj) # 0, and take any yo € R, reducing to y (mod m).
Then f(z,y9) € R[z]. Suppose that o € R reduces to z. Then f(zg,y) € m
and %(mo,yo) ¢ m. Hence there exists 2’ € R with 2/ = 27 (mod m) such that
f(z',y0) = 0 and (2/,y0) — (z,y). (Hensel’'s Lemma — Lemma 6.1.) So we have
surjectivity on the right.

Consequence. Suppose that v(A) = 0. Then E is nonsingular, and E,, = E. So
we have an exact sequence

0 — E1(K) — FEy(K) E(k) 0.

E(K)
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We now analyze E)(K).

Proposition 6.20 The map E(m) — E;(K) given by z — ( z. =1 > is an isomor-
phism.

Proof. We know that w(z) converges for z € m, and ( z. =1 ) satisfies the Weier-

w(z)? w(z)

straf equation of E. So (L _—1> € E(K). Recall

w(z)? w(z)
w(z) =22 (1+ Az + Agz* + ),

A, € Zlay, ..., ag]. Sov (ﬁ) = —3v(z), so <ﬁ, %) € Fi(K). w(z) =0 only if
z =0, so the map is injective. Now suppose z,y € E(K). Then y? + -+ =23 + - -,
so 3v(z) = 2v(y) = —6r (some r > 1). So ¥ € m, and so we have an injective

homomorphism (Exercise!) Ey(K) — E(m) given by (z,y) — —%. Hence we have

injections

E(m) — E\(K) — E(m),

and so these must be isomorphisms.
Now we can look at points of finite order.

Proposition 6.21 Suppose that E/K is an elliptic curve, and m > 1 is an integer
coprime to char(k).

(a) F1(K) has no nontrivial points of order m.

(b) Suppose that the reduced curve E(k) is nonsingular, and let E(K)[m] denote
the set of points of order m in E(K). Then the reduction map E(K)[m] — E(k)
is injective.

Proof. Consider the exact sequence

0 — Fy(K) — Eo(K) — Eps(k) — 0.
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(a) Ey(K)~ E (m), and so E;(K) contains no nontrivial points of order m (since
this is true of E(m)) (Proposition 6.7(b)).

(b) If E/k is nonsingular, then Fy(K) = E(K) and E,,(k) = E(k). Hence the

m-~torsion in F(K) injects into F(k).

Corollary 6.22 If FE has good reduction and p { m, then (z,y) € F(K)[m] implies
z,y € R.

Proof. F\(K) = {(x,y) : x,y &€ R}.

Example. Finally all torsion on E : y?> = 2% — x over Q. Observe that A =
—64 = —2°. Consider E (mod 3). E is nonsingular. So we have (prime-to-3 torsion)
x| 2d—z |y
0 0 0
1 0 0
-1 0 0

and the point at infinity. So #E (F3) = 4, and this bounds the prime-to-3 torsion.
Now consider £ (mod 5).

3

T |xP—x| Y
0 0 0
1 1 0
2 2 +1
-2 —2 +2
—1 —1 0

and the point at infinity. So #E (F5) = 8, and this implies that there is no 3-torsion.
Hence #E(Q)iors < 4, and in fact

E(Q)tors = {(Oa O>> (17 0)7 <_17 O)’ OO}

— all killed by 2.
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Theorem 6.23 Suppose that K is a local field, and that F/K is an elliptic curve with
good reduction. Let p = char(k), and suppose m € Z with p{m. Then K(E,,)/K is
unramified.

Proof. Suppose o is in the inertia subgroup of Gal(K(E,,)/K). If P € E,,, then

—_—~—

o(P)—P=0(P)—P=P—-P=0.

Hence o(P) = P for all P € E,,, and so 0 = 1, as required.

Remark.
(a) Theorem 6.23 is false without the good reduction hypothesis.

(b) Suppose that F' is a number field. Then F(E,,)/F is ramified only at primes
dividing m and primes of bad reduction.

Theorem 6.24 Suppose that K is a local field, and that F/K has good reduction.

Let P € E(K) with mP € E(K) and p{m. Then K(P)/K is unramified.

Proof. If 0 € Gal(K/K), then m(cP — P) = o(mP) — mP = O. Now, as before,
if o is in the inertia subgroup of Gal(K(P)/K), then P — P = O, so oP — P = O,
and the result follows as previously.

The previous two theorems may be formulated in terms of Galois action: Let K™
be the maximal unramified extension of K, and let I, be the inertia subgroup of
Gal(K/K). Then there is an exact sequence

1 —Gal(K/K") — Gal(K/K) — Gal(K""/K) —1.

-

I, Gal(k/k)
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Definition 6.25 Let ¥ be a set on which Gal(K/K) acts. Then ¥ is said to be
unramified at v if the action of I, upon X is trivial.

Theorem 6.26 Let £/K be an elliptic curve with E/k nonsingular.
(i) Suppose m > 1, with p{m (p = char(k)). Then F,, is unramified at v.
(i) If ¢ # p, then T,(E) is unramified at v.

Proof. See above.

Definition 6.27 Suppose that F/K is an elliptic curve and that E /k is the reduced
curve for a minimal Weierstral equation.

(i) F has good (or stable) reduction over K if E/k is nonsingular.
(ii) E has multiplicative (or semistable) reduction over K if £ has a node.
(iii) F has additive (or unstable) reduction if £ has a cusp.

In case (ii) above, E is said to have split (respectively non-split) multiplicative reduc-
tion if the slopes of the tangent lines at the node are in k (respectively not in k).

The reasons for (some of) the above terminology are summarized by the following
proposition.

Proposition 6.28 Let E/K be an elliptic curve with minimal Weierstrak equation
y2 4+ ayzy + azy = 2° + axx® + a4x + ag, and of discriminant A. Set ¢, = (a? + 4ay)* —
24(2(14 + CL16L3).

(a) E has good reduction iff v(A) = 0.

(b) E has multiplicative reduction iff v(A) > 0 and v(c4) = 0. In this case, E, (k) ~
k*.

(¢) E has additive reduction iff v(A) > 0 and v(cy) > 0. In this case, Epns(k) ~ k*.
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Proof. Tedious case-by-case analysis. See Silverman III 1.4 and III 2.5.

Definition 6.29 An elliptic curve E'/K is said to have potential good reduction
over K if there is a finite extension K’/K such that /K’ has good reduction.

Exercise. If F/K has complex multiplication, then F/K has potential good reduc-

tion.

Theorem 6.30 (Semistable reduction theorem) Let £//K be an elliptic curve.

(a)

(b)

(c)

Suppose that K’/K is an unramified extension. Then the reduction type of £
over K is the same as that of E over K'.

Suppose that K'/K is a finite extension, and that F has either good or multi-
plicative reduction over K. Then it has the same type of reduction over K.

There exists a finite extension K'/K such that F/K’ has either good or split
multiplicative reduction.

Proof. We suppose that we have v'/v, K'/K, R'/R, A’/A, and cj/c4.

(a)

For simplicity, assume char(k) > 5, and let 4> = 23 + Az + B be a minimal
WeierstraR equation of E over K. Let x — (u')%*r, y — (¢/)?y’ be a change of
coordinates giving a minimal equation for £ over K’. Then K'/K is unramified
implies that there exists u € K such that u/u’ € (R')*. So we see that the
substitution z — u?z’, y — u3y’ also gives a minimal equation for £/ K’ because
v'(u™2A) = ' ((v/)7*2A). Since this new equation also has coefficients in R, we
have v(u) = 0, as the original equation was minimal over K. Thus the original
equation is also minimal over K’. Now v(A) = v/(A) and v(cy) = v/(c}), so by
Proposition 6.28, E has the same reduction type over K and K’.

Let A and ¢4 be the quantities associated to a minimal Weierstralt equation for
E/K, and let x — u?x’ +r, y — vy + su?x’ +t be a change of coordinates
giving a minimal equation over K’ with associated quantities A’ and ¢j. Then
0 < V'(A) = v (u2A) and 0 < v'(d}) = v'(u"*cy). Since v'(A’) is minimal,
u € R, and so

0 < v/(u) < min {%v’(A), iv'@)} |
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Now good reduction implies v(A) = 0, and multiplicative reduction implies
v(eq) = 0, so v'(u) = 0 in the case of either good or multiplicative reduction.
So we have v/(A") = v'(A) and v'(c}) = v'(c4), and now the result follows from
Proposition 6.28.

(c) Assume for simplicity that char(k) # 2, and that (possibly over a finite extension
of K) E has a Weierstrafs equation in Legendre normal form

E:y?=z(x—1)(z—N), A#0,q.

Then ¢y = 16(A*> — X + 1) and A = 16A?(\ — 1)2. There are three cases to
consider:

(i) Ae R, A#Z0or 1 (mod m). Then A € R*, so E has good reduction over
K.

(ii)) A€ R, A=0or 1 (mod m). Then A € m and ¢4 € R*, so E has split
multiplicative reduction.

(iii)) A € R. Choose r > 1 so that 7"\ € R*, and make the substitution
x i 72y — w32y (passing to K (m'/?) if necessary). This yields a
Weierstral equation (y')? = a/(2' — 7") (2’ — 7" \) with integral coefficients,
A" e m, ¢, € R*, so E has split multiplicative reduction.

Proposition 6.31 Let E/K be an elliptic curve. Then E has potential good reduc-
tion iff j(F) € R.

Proof. Assume that char(k) # 2 and that £ : y?> = z(z — 1)(x — \), A # 0 or 1.
Then we have
25(1— (1= N)* —jA3(1—)N)?2=0.

Thus j(F) € R implies that A is an integer and A =0 or 1 (mod m). So the Legendre
model has integral coefficients and good reduction. Suppose conversely that E has
potential good reduction, and let K’/K be a finite extension such that E has good
reduction over K’. Then

/\3
(04) 6 }%/7

i) =8

so j(F) € R since j(F) € K.
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To study questions involving reduction, we introduce the notion of the Néron minimal
model.

Definition 6.32 Let X be a scheme with a morphism to another scheme, X — S.
We say that X is a group scheme over S' if there are

e A section e : S — X (the identity).
e A morphism p: X — X over S (the inverse).
e A morphism g : X x X — X over S (group multiplication) such that

(a) The composition o (id x p) : X — X is equal to the projection X — S
followed by e.

(b) The two morphisms g o (u x id) and po (id x p) from X x X x X — X
are the same.

Now let K be a local field as before, and let E/K be an elliptic curve.

Definition 6.33 A Néron model £/R for E/K is a smooth group scheme over
R whose generic fiber is £/K and which satisfies the following universal property:
Let X/R be a smooth scheme, and let ¢ : X Xz K — £ X K be a rational map.
Then ¢y extends uniquely to a morphism ¢ : X/R — £/K. This universal property
characterizes the Néron model.

By analyzing the special fiber of £/R (there are only finitely many possibilities), it is
possible to prove the following result:

Theorem 6.34 Let E//K be an elliptic curve. If E has split multiplicative reduc-
tion over K, then F(K)/Ey(K) is a cyclic group of order v(A). In all other cases,
E(K)/Ey(K) has order at most 4.

Corollary 6.35 Ey(K) is of finite index in F(K).
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This fact can be used to give further insight into E(K):

Proposition 6.36 Suppose K is a finite extension of Q,. Then E(K) contains a
subgroup of finite index which is isomorphic to the additive group R™.

Proof. We know that E(K)/Ey(K) is finite, and that Eo(K)/Ei(K) ~ E,(k),
which is also finite. So it suffices to show that E;(K) has a subgroup of finite index
which is isomorphic to RT. We have F;(K) ~ E(m). Now E(m) has a filtration

A ~

E(m) > E(m?) D E(m3) D

and A . A . . .
E(mz)/E<mz+1) ~ ml/ml+l

(Proposition 6.7(a)), which is finite. For r > ( = (where v is the valuation on K),

we have (Corollary 6.16) E(m”) ~ m" (via the formal logarithm), which in turn is
isomorphic to 7" R, where 7 is a local uniformizer of K.

Theorem 6.37 (Criterion of Néron-Ogg-Shafarevich) Let E/K be an elliptic curve.
The following statements are equivalent:

a) E has good reduction over K.

(a)

(b) E[m] is unramified at v for all integers m > 1 coprime to char(k).

(c) The Tate module T;(E) is unramified for some (or all) ¢ # char(k).
)

(d) E[m] is unramified for infinitely many integers m > 1 coprime to char(k).

Proof. It suffices to show (d) implies (a). Let m be an integer satisfying:
(i) m is coprime to char(k).
(ii) m > #E(K")/Eo(K").

(iii) E[m] is unramified at v.
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Look at the two exact sequences

0= Ba(K™) = B(K™) = s =0 ()
and
0 — Ey(K™) — Eo(K™) — Epg(k) — 0. (%)

Now E[m] C E(K™), and so F(K™) has a subgroup isomorphic to (Z/mZ)?. Since
m > #E(K")/Ey(K™), there exists a prime ¢ | m such that Ey(K"") contains a
subgroup isomorphic to (Z/¢Z)?. Now (+*) implies that E,(k) contains a subgroup
isomorphic to (Z/(Z)?, since E;(K™) contains no (-torsion. This can only happen
if E has good reduction over K™, which in turn implies that £ has good reduction
over K.

Corollary 6.38 Suppose E;/K and Fy(K) are elliptic curves which are isogenous
over K. Then either they both have good reduction or they both do not.

Proof. Let ¢ : Fy — F, be a nonzero isogeny defined over K. Suppose m > 2 is
coprime to both char(k) and deg(y). Then ¢ : Ei[m] — Ep[m] is an isomorphism of
Gal(K/K)-modules. Hence both modules are ramified or both are not.

Corollary 6.39 Let E/K be an elliptic curve. Then E has potential good reduction
iff the inertia group I, acts on T;(E) through a finite quotient for some (or all) primes

¢ # char(k).

Proof. Suppose that E/K has potential good reduction. Then there exists a finite
extension K’/K such that F has good reduction over K’; we may assume that K'/K
is Galois. Theorem 6.37 implies that I, acts trivially on Ty(E) for all ¢ # char(k).
Hence the action of I, on Ty(FE) factors though the finite quotient I, /I, as desired.

Suppose conversely that for some ¢ # char(k), the action of I, on Ty(E) factors
though a finite quotient I,/H. Then K# is a finite extension of K7 = K™. Hence
there exists a finite extension K’/K such that K% = K'- K™. Then I, = H, which
acts trivially on Ty(E) by hypothesis. Theorem 6.37 now implies that E has good
reduction over K'.
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Chapter 7

A Cohomological Interlude

7.1 Cohomology of Finite Groups

Suppose that G is a finite group, and M is a G-module.
Definition 7.1 We define H(G, M) = M% = {m € M | o(m) = m for all 0 € G}.

Definition 7.2 A (1)-cocycle or crossed homomorphism is a map f: G — M
such that f(o7) = f(o) +of(7) for all 0,7 € G. So

f) = fQ1-1) = f(1) + (1),

and so f(1) = 0. For any fixed m € M, the map o — o(m) —m is a cocycle. We
say that such a cocycle is a coboundary (or that such a crossed homomorphism
is principal). The sets of cocycles and coboundaries are closed under addition and
subtraction.

Definition 7.3 We define H'(G,m) = —ocvcles)

{coboundaries}

Remark. If G acts trivially on M, then a cocycle is a homomorphism, and every
coboundary is zero. So H'(G, M) = Hom(G, M) (and H°(G, M) = ME = M).

Theorem 7.4 (Hilbert’s Theorem 90) Suppose L/K is a finite Galois extension with
G = Gal(L/K). Then H'(G,L*) = 0.

80



Proof. Suppose f: G — L* is a cocycle. So f(o7) = f(o)f(7)?. We seck v € L*
such that f(o) = @ for all 0 € G. Now since f is not the zero map, it follows via
linear independence of characters that the map L — L given by

z Y f(r)r(@)

is not the zero map, i.e. there exists a € L such that

8:=3 f(r)r(a) 0.

TG
Then
o(8) =Y _o(f(r)or(a)
TG
=Y flo) " flom)oT(a)
TEG
= f(@)')_ flor)or(a)
TeG
= f(o)™'8
o 5 _ o3
o
f<0-> - O'(ﬁ) - ﬁ,l )
as desired.
Corollary 7.5 A point P = (zg: ---: x,) € P*(L) is fixed by G iff it is represented

by an (n 4 1)-tuple in K.

Proof. Suppose that o(P) = P for all 0 € G. Then we have o(xg,...,z,) =

c(o)(zo, . .., xy,) for some c(o) € L*. Check that o — ¢(o) is a cocycle. Then Theorem
7.4 implies that (o) = 7 for some o € L*. Thus o(axg,...,ax,) = (axg,...,az,),
and so ax; € K fort=0,...,n.
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Proposition 7.6 For any exact sequence of G-modules

0-MEMLPp_o,
there is a natural exact sequence

0— H(G, M) — H°(G,N) — H°(G, P) > H'(G, M) — H'(G,N) — H'(G, P).

Proof. Here is the definition of the connecting homomorphism d: Suppose p €
H°(G,P) = PY Then there exists n € N with f(n) = p. For any o € G,
f(e(n) —n) = o(p) —p = 0, and so o(n) —n € M. Then G — M given by
o +— o(n) —nis a cocycle. Check that this is well-defined, etc.

Definition 7.7 Suppose H < G. Then the restriction map f +— f |5 on cocycles
induces a restriction homomorphism Res : H'(G, M) — H'(H, M) on cohomology
groups.

Remark. Suppose that H < G, and that M is a G-module. Then M is a G/H-
module. A cocycle f: G/H — M* induces a cocycle f : G — M

G--"~M
G/H?MH

and so we obtain an inflation homomorphism Inf : H'(G/H, M) — HY(G, M).
Then the following sequence is exact (exercise):

Inf Res

0— HYG/H,M") 2 HYG, M) "% H'(H, M).
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7.2 Cohomology of Infinite Galois Groups

Suppose K is a perfect field, and set G = Aut(K/K). We define the Krull topology on
G as follows: H < G is open iff Fix(H)/K is a finite extension. We write Gal(K /K)
for G endowed with the Krull topology. We have the Galois correspondence

{finite extensions of K} < {open subgroups of G}.

Definition 7.8

e WE say that a G-module M is discrete if the map G x M — M is continuous
relative to the discrete topology on M and the Krull topology on G. This is
equivalent to M = |, M, where H runs over open subgroups of G (i.e. every
element of M is fixed by a subgroup of G fixing a finite extension of K).

e Suppose that M is discrete. Then a cocycle f : G — M is continuous iff f is
constant on the cosets of some open normal subgroup H of G. (Then f arises
via inflation from a cocycle G/H — M.) Every coboundary is continuous.

Definition 7.9 H'(G, M) = {entimows cooydes} g,

{coboundaries}

HY(G, M) = lim H'(G/H, M"),
H

where H runs over open normal subgroups of G.

Example. (Kummer Theory) We have

HY(Gal(K/K), K*) =lim H'(Gal(L/K), L*) = 0

(via Hilbert’s Theorem 90). Now consider the exact sequence

1— p,(K) KX KX 1.

T z"
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This yields the following exact sequence of cohomology groups:

1 — i (K) —= K> K* —= HYGal(K /K), u(K)) — H'(Gal(K /K), K*) = 1.

Xrh—-> "

So we have
HY(Gal(K /), ja(K) =

Notice that if p,(K) C K*, then
HY(Gal( K/ K), () = Hom(Gal(K /K), (),
and so
KX
(K)r

~ Hom(Gal(K/K), ju,(K)).

o(zt/™)

If z € K*, then §(z) is the cocycle given by o +— Z5=.

84



Chapter 8

Elliptic Curves over Global Fields

Mordell-Weil Theorem. If K is a number field and F/K is an elliptic curve, then
E(K) is finitely generated.

Weak Mordell-Weil Theorem. Suppose in addition that n € N. Then E(K)/nE(K)
is finite.

Notation. We write H (Gal(K/K),—) = H (K, —).

Proposition 8.1

(a) If K is a number field or a local field, then there is an exact sequence

E(K) 1 1
0 H (K, FE, HYK,E), — 0.
(b) IF K is a number field and v is any place of K, then the following diagram
commutes:
B(K
0 nE((K?) Hl(KaEn)HHI(K,E)nHO
N
> locy
B(K,) -
0—=ipgey — H'(Ky, By) —= H'(K,, E)y —=0
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Proof.

(a) There is an exact sequence

_ [n] _

0—FE,— EK)— E(K)—D0.
Taking Gal(K /K )-cohomology of this sequence yields

0 — B (K) — B(K) ™ B(K) — H(K, E,) — H'(K, E) " 0'(K, B),

whence we obtain
E(K)
nE(K)

0— — HY(K,E,) — HY(K,E), — 0.

If K is a number field, then H'(K, E,) is usually infinite: e.g. suppose F, C F(K).
Then also u,, C K (via the existence of the Weil pairing). So

HYK,E,) ~ H (K, jtn, X jin) ~ ((;{(XX)”)Q.

This motivates the following definitions:

Definition 8.2
(i) The n-Selmer group S™(E/K) is defined by

SM(E/K) = ker {Hl(K, E) B T H (K., E)} .

(ii) The Tate-Shafarevich group of E/K is defined by

[(E/K) = ker {Hl(K, B) o e, E)} .
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Theorem 8.3 There is an exact sequence

— S"(E/K) - III(E/K), — 0.

Proof. Follows directly from the definitions. Alternatively, use the following:

Kernel-Cokernel Exact Sequence. Suppose A, B, and C' are abelian groups with
A5 BL
Then there is an exact sequence
0 — ker(a) — ker(Ba) = ker(3) — coker(a) LA coker(fa) — coker(3) — 0.
To see this, apply the snake lemma to the following diagram:

id «

0 A A B
al JoLe! g
B B id %,

Then we have
H\(K,E,) % H'(K, E), > [[ H\(K., E).,

SO

E(K)

0= LE(E)

— SW(E/K) - II(E/K), — 0

is exact.

Goal. We show that S™(E/K) is finite.

The essential idea is to show that each element of S (FE/K) becomes trivial over an
extension of bounded degree which is unramified away from a set of primes depending
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only on n, E, and K. We shall then appeal to the classical finiteness theorems of
algebraic number theory to complete the proof.

Lemma 8.4 Let v be a finite place of K, and suppose that F/K, has good re-
duction. Suppose also that char(k,) t n (k, is the residue field of K,). Then for
any P € E(Ky), there exists a finite unramified extension M (v; P)/K, such that
P e nE(M(v; P)).

Proof. Follows immediately from the fact that K, (1 P) /K, is unramified (see The-
orem 6.24).

Proposition 8.5 Let T" be the set of infinite places of K, together with the finite set
of finite places of K dividing 2nAp. Then, for any v € S™(E/K) and any v € T,
there exists a finite unramified extension K,(7) of K, such that v maps to zero under
the following sequence of maps

locy

HY(K,E,) —% H'(K,, E,) —< HY(K,(7), Ex).

|

SM(E/K)

Proof. For any place v of K, there exists P, € F(K,) mapping to the image ~, €
HY(K,,E,) of vy € SW(E/K). If v ¢ T, then E/K, has good reduction. The result
now follows via considering the following diagram (cf Lemma 8.4):

[n]

E(K) E(K) HY(K, E,)
L i

E(K,) E(K,) HY(K,, Ey,)
o |

E(M(v; P)) — E(M (v; P,)) —= H"(My(v; P,))
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Lemma 8.6 For any finite extension L/ K, the kernel of the restriction map S™(E/K) —

SM(E/L) is finite.

Proof. Observe that the kernel of H'(K, E,) — H'(L,E,) is H(Gal(L/K), E,),
which is finite.

Consequence. In order to show that S™(E/K) is finite, we may assume that
E, C E(K). Then

HYK,E,) ~ H\(K, p,) x H"(K, j1,) ~ (K*/K*™)?.

We make this assumption from now on.

Observe that for any finite place v of K, we have a natural homomorphism (K, K}")? —
(Z/nZ)? given by (a, ) — (ord,(a), ord,(3)).

Proposition 8.7 Suppose that v € S™(E/K) and v ¢ T. Then the image of v
under the sequence of maps

H'(K,E,) — H'(K,, E,) = (K} /KX™)? 2% (Z/nZ)?

is equal to zero.

Proof. Proposition 8.5 implies that there exists a finite unramified extension K,(7)
of K, such that the image of v, € H'(K,, E,) in H'(K,(7), E,) is zero. The result
now follows from the following diagram:

HY(Ky, En) (KK (Z/nZ)?
| |
HY(Ky(7), En) —= (K, (7)) Ko () ") — (Z/nZ)?

where the map on the right is the identity map because K, (7)/K, is unramified.

Theorem 8.8
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(a) The ideal class group Cl(ok) is finite.

(b) The unit group oy of ok is finitely generated. Recall (to orient yourself) that
there is an exact sequence

I— 0;({ - Gav ﬁniteZ - CI(OK) —0.

ar+———s (ord,())

(¢) Let o and Cl(ogr) be defined via exactness of the sequence
l—ogp— K — @Z — Cl(og.r) — 0.
vegT

Then o} ;- is finitely generated, and Cl(ox r) is finite.

Proof.
(c) This follows from the fact that (from the definitions) there is an exact sequence
L —og —o0gr— @Z — Cl(og) — Cl(ogr) — 0. (%)
veT
Aliter: Apply the kernel-cokernel exact sequence to
KPPz
all v vgT

to obtain (k).

Lemma 8.9 For any finite subset T of places of K which contains the infinite places
of K, write N for the kernel of the map

KX /K" — @ z/nZ
vgT

given by a — (ord,(c)),gr. Then there is an exact sequence

X
Ok

Xn
O T

1 —

— NT — CI(OK,T)n-
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Proof. Consider the following diagram:

1 —=okr KJ Dogr Z — Cllogr) —0
1 ——=o0kr K~ Dogr Z — Cllogr) —0

L

KX A
Kxn @’L}QT nZ

Suppose o € K* represents an element of Np. Then n | ord,(«) for all v ¢ T', so we
can map « to the class of

o (ordy(oz)

n

) S CI(OK,T).
vgT

Clearly we have nc = 0. Suppose ¢ = 0. Then there exists § € K* such that
ord,(8) = %@‘) for all v ¢ T. Then 4 € 0y 7 and is well-defined up to an element

of 0 1.
Corollary 8.10 S™(E/K) is finite.
Proof. Follows from Proposition 8.7 and Lemma 8.9.

Theorem 8.11 (Descent Theorem.) Suppose that A is an abelian group and that
there is a function h : A — R (a height function) satisfying the following properties:

(i) Suppose @ € A. Then there exists a constant Cg (depending only on A and Q)
such that for all P € A, h(P + Q) < 2h(P) + Cq.

(ii) There exists an integer m > 2 and a constant Cy (depending only on A) such
that for all P € A, h(mP) > m?h(P) — Cs.

(iii) For every constant Cs, #{P € A: h(P) < (3} < 0.
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Then, if A/mA is finite (m as in (ii)), the group A is finitely generated.

Proof. Let Q1,...,Q, € A be a set of representatives of the cosets in A/mA, and
suppose that P € A. Then we may write

P=mP, + Q (1<i <),
Plzmp2+Qi27

Pn—l - mpn + Qin'
Then, for any j > 1,
(h(mP;) + Cs)

(h(Pj-1 — Qi;) + Co)

=3 =3 |~

< —(2h(P;_y) + C| + Cy) (1)

m2

(using (i) above), where (] = max;<;<,{Cq,}. Note that C] and Cy are both inde-
pendent of P.

Now apply () repeatedly starting from P, and working backward to P. We obtain

h(P,) < (%) h(P,-1) + %(Oi + (),

m

SO

2n

2\" 1 4 2\
WP < (5 ) BP)+ (gt b ot o ] (O 4 C)

< 27 R(P) + 2(C) + C)

(since m > 2). So by taking n sufficiently large, we may ensure that h(P,) < 1+

P=m"P, + Zn: mj’lQij

J=1
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(from the definitions). Hence it follows that each element P € A is a linear combina-
tion of points in the set

{Qu, .. @} U{Q e A h(Q) <1+2(C1 + ()},

and (iii) implies that this set is finite.

Definition 8.12 Suppose that K is a number field, and let P = [z : --- : zn] €
PV(K), z; € K, 0 <i < N. The height H(P) of P relative to K is defined by

HK(P) = H max{|$0|v7 ceey ’xN|v}[KU:QU] = H {|x0|v7 sy ’xN|v}nU-

vEME vEMK

Proposition 8.13
(a) Hg(P) is independent of the choice of homogeneous coordinates of P.
(b) Hg(P)>1 for all P € PV,
(c¢) If L/K is any finite extension, then

Hp(P) = Hg(P)FE]

Proof.

(a) For any A\ € K, we have

[T max{iAail}™ = (H rw) [T maxlail
- Hmiax{]a:ilv}”“

(via the product formula).
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(b) For any point P € P¥(z), we may choose coordinates [xg : - -+ : xx] such that
at least one z; = 1. Then every factor in

| [ max{|zil,}™
i
v

is at least 1.

(c) [Recall that
Z ne = [L: K|n,

weMp,
wlv

for v € Mg.] We have

Hy(P)= [] max{|a|,}"™

weMy,

=TI I meax{ledy

vEM g weM7y,
wlv

= [ max{faf, =5

vEMK

= Hy(P)EE,

Definition 8.14 Suppose that P € PY(Q). The absolute height H(P) of P is
defined by
H(P) = Hy(P)"/1,

where K is any number field such that P € PV (K).

Proposition 8.15 Suppose P = [z : -+ : zx] € PY(Q) and ¢ € Gal(Q/Q). Then
H(o(P)) = H(P).

Proof. Choose a number field K such that P € PY(K). Write My and M, ) for
the set of absolute values on K and o(K), respectively. Then we have isomorphisms
o: K 5 o(K)and o : Mg = M, given by v — o(v) and |o(z)|y) = |z, for all
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z € K. Also o : K, = 0(K),q) (isomorphism on completions), and so n, = ng(,)
(equality of local degrees). Thus

Houey(0(P)) = ] max{lo(w)u}™

wGM(,(K)

= H max{|o(;)]s@)}""

vEME

= [T max{fail)™

vEME

= Hg(P),

whence the result follows.

Theorem 8.16 For any numbers B, D > 0, the set
{P cP¥(Q) | H(P) < B and [Q(P) : Q] < D}

is finite. So, for any fixed number field K, the set {P € PN(K) | Hx(P) < B} is
finite.

Proof. Suppose that P = [zg : -+ : x| with some z; = 1. Then, for any v and for
any 7, we have
max{|z1|y, .-, [Tn]o}™ > max{|x;|,, 1}".

So, multiplying over all v and taking an appropriate root gives H(P) > H(x;) for
0 <i < N. Plainly Q(z;) € Q(P).

It suffices to prove that for each 1 < d < D, the set

{z€QQ| H(z) < B and [Q(z) : Q] = d}

is finite (i.e. we've reduced to the case N = 1). Set K = Q(z), and suppose [K :
Q] =d. Let x,...,x4 denote the Galois conjugates of z over Q. Set

d

FAT) = T = ;) = > (<17 S, ()"

j=1 r=0
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— the minimal polynomial of x over Q. Then

E ajil".xir

1<ig < <ir<d

’ST(x)‘v =

v

<c(v,r,d)  max  |my T
1<iy <-<ip<d

< c(v,r,d) 111<1?<>§|$z|27

where
(d) < 2% if v is archimedean,
c(v,r,d) =< 7 L .
1 if v is nonarchimedean.
Hence J
max{|So(x)ly, .-, |Sa(z)|s} < c(v,d) H max{|z;|,, 1},
=0
where

1 if v is nonarchimedean.

(v, d) = {2d if v is archimedean,

Multiplying over all v € My and taking [K : Q]*® roots yields

d
H(So(x),..., Sa(x)) < 2/ T] H(w)* = 2°H (2)*

=0

(via Proposition 8.15). So if x lies in the set

{r€Q| H(z) < Band [Qx): Q] = d},
then z is a root of a polynomial F,(7) € Q[T] whose coefficients Sy, ..., S, satisfy
H(S,...,8) < s°BY.

There are only finitely many possibilities for such an F,(T'), and hence there are only
finitely many possibilities for x.

Corollary 8.17 (Kronecker) Let K be a number field and P = [z : -+ : xy] €
PN(K). Fix any i with z; # 0. Then H(P) = 1 iff z;/x; is a root of unity or zero for
every 0 < 7 <n.
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Proof. Without loss of generality we may divide the coordinates of P and then
reorder them so that P = (1,2,...,2x). Suppose that every x; is zero or a root of
unity. Then max{1l,|z;|,} = 1 for every v, and so H(P) = 1. Suppose conversely
that H(P) = 1. Set

P = (1,27, 25, ...,2%),

r=1,2,... Then H(P") = H(P)" = 1 for each r. Theorem 8.16 implies that the
sequence P, P%, P3 ... contains only finitely many distinct points, and so we may

choose r > s > 1 such that P* = P". Then z5 = 27 (1 < j < n) (since we've

dehomogenized with xy = 1), so each z; is a root of unity or zero.

8.1 Heights on Elliptic Curves

Recall. If f € K(E), then we have a max f : E — P! given by

P [17 0] lf P iS a pole OI f7
—
[f(] ), 1] Otherwise,

Definition 8.18 The (absolute logarithmic) height on PN(Q) is defined by h :
PY(Q) — R, given by P + log H(P). (So H(P) > 1 implies h(P) > 0.)

Definition 8.19 Suppose that E/K is an elliptic curve and that f € K (E) is a
nonconstant function. The height on E relative to f is defined by hy : E(K) — R,
given by P — h(f(P)).

Proposition 8.20 Suppose F/K is an elliptic curve and f € K(F) a nonconstant
function. Then, for any constant C,

#{P € E(K) | hy(P) < C} < 0.
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Proof. The function f gives a map from {P € E(K) | hy(P) < C} to {Q € P(K) |
H(Q) < e}, and this map is finite-to-one. Now apply Theorem 8.16.

Definition 8.21 A morphism of degree d between projective spaces is a map F :
PY — PY given by P — [fo(P),..., fu(P)], where fo,..., fu € Q[Xo,..., Xn] are
homogeneous polynomials of degree d with no common zero in QQ except Xg=--- =
Xy =0.

Theorem 8.22 Suppose F' : PN — P is a morphism of degree d. Then there exist
constants C; and Cy, depending only upon F, such that for all P € PY(Q),

C1H(P)* < H(F(P)) < CLH(P)“.

Proof. Set I' = [fo,..., fu], fi homogeneous for all i, and let P = [z¢,...,2n] €
PN(Q). Let K be a field containing all z;’s and all of the coefficients of all of the f;’s.
Define

1P|, = ma{fe.]}.
| (P)]o = max{[f;(P)|.},
|F|, = max{|al, : a is a coefficient of some f;}.

Then
Hy(P) =[] IPI

and
Hy(F(P)) =[] IF(P).

So we define

Hy(F)=]]IFl.
(This means that Hg (F) := Hg([ag, a1, - ..]), where the a;’s are all of the coefficients

of the f;’s.) Set
1 if
)= LU
0 ifvtoo.
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So, for example,
|t1 4+ .. 4 tn|v < ne(n) max{|t1|v, ceey |tn|v}

(triangle inequality).

We now show the upper bound. Each f; is homogeneous of degree d. So, for each i,
we have

£:(P)], < C5Y|F|,| P|?

N+d

d ), the number of monomials of degree

(via the triangle inequality) (e.g. take C} = (
d in N + 1 variables). Also

[F(P)l. < C™|F LIPS,
Now raising to the n'" power, multiplying over all v, and taking [K : Q]'" roots yields

H(F(P)) < CiH(F)H(P)”.

We now show the lower bound. Recall Hilbert’s Nullstellensatz: Suppose that a is
an ideal of K[Xj, ..., Xy]|, and let f be any polynomial in K[Xj,..., Xy] such that
f(ao,...,ay) = 0 for every zero of a in Q. Then there exists an integer m > 0 such
that f™ € a.

Suppose B
{Q e AYHQ): fo(Q) == fn(Q) =0} = {(0,...,0)}.

Then by the Nullstellensatz, the ideal (fo,..., fuir) € Q[Xo,..., Xy] contains some
power of each of Xy,..., Xy. Thus for some e > 1, there exist polynomials g;; €

Q[Xo, ..., Xn]| such that

Xf= Zgijfj, 0<i<N. (1)

Without loss of generality, we may assume:
e Each gij € K[Xo, c. ,XN].

e Each g;; is homogeneous of degree e — d.

99



Set
|G|, := max{|b|, : b is a coefficient of some g;;}

and

Hy(G) =[] 1G>

Now P = [Xy,...,Xy], and so (f) implies

e __
|'ri|v -

< G5 maxc {95y (P) (P}

Zgij(P)fj(P)

v

SO
[Pl; < G5 max{|giy (P)]}F(P) (+)

(taking the maximum over ¢). Now deg g;; = e — d, so
1931 (P)] < C51GL.| Pl
whence () gives
P|" < CFIGLIF(P)L.

and now the lower bound follows.

Theorem 8.23 Suppose E/K is an elliptic curve, and that f € K(E) is even (i.e.
fol=1] = f). Then for all P,Q € E(K), we have

hi(P+ Q)+ hy(P — Q) =2hs(P) +2hs(Q) + Op ¢(1).

Proof. Let E : y? = 2° + Ax + B, say. We first consider the case of f = x. Then
h.(O) = 0 and h,(—P) = h,(P), so the result holds if P = O or ) = O. Thus
suppose P # O and @Q # O. Let x(P) = [z1,1], 2(Q) = [x2,1], (P + Q) = [z3, 1],
and (P — Q) = [x4,1]. Then (by the addition formulae and algebra)

2(z1 + x9) (A + z122) + 4B
(r1 + x9)? — 4z 129

(r129 — A)? — 4B (31 + 12)
(v1 + 22)% — 42129 ’

ZL‘3+JZ4:

XT3y =
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Define g : P? — P? by
[t,u,v] — [u® — 4tv, 2u(At +v) + 4Bt>, (v — At)* — 4Btu).
We claim that there is a commutative diagram

(P,.Q)—(P+Q,P-Q)

(P,Q) E x € < ExE
] l /|
(z(P), 2(Q)) P! x P! |o ”‘\]P)l x P! ([e, B, [z, Ba])
/N ]

P? (8182, 0132 + o 31, g

[The idea is to treat t, uw, and v as 1, x; + x9, and z29, respectively.| This follows
from formulae for x5 and 4.

We claim that g is a morphism. We are required to prove that the three homogeneous
polynomials defining g have no common zero except t = v = v = 0. So suppose
t = 0. Then u?> — 4tv = 0 and (v — At)? — 4Btu = 0 imply u = v = 0. Thus we
may assume ¢ # 0 and define x := u/2t. Then u? — 4tv = 0 becomes x? = v/t,
2u(At+v)+4Bt* = 0 become ¢(x) := 42 +4Ar+4B = 0, and (v — At)? —4Btu = 0
becomes ¢(z) := x* — 2Ax? — 8Bx + A? = 0. Observe that

(122° — 16A)d(z) — (32° — 5Az + 27B)y(z) = 4(4A° + 27B*) £ 0

(since £ is nonsingular), so ¢(z) and ¢(x) have no common zeros, so g is a morphism.
Hence, from the diagram, we have

ho(P+Q,P—Q))=h(coG(P,Q))
=h(goo(P,Q))
= 2h(c(P,Q)) + O(1)

(via Theorem 8.22, since ¢ is a morphism of degree 2).

We claim that for all Ry, Ry € F(K), we have h(o(R1, R2)) = hy(R1)+hi(Ry)+0O(1).
[Then

ho(P+Q, P —Q)) =2h(o(P,Q)) + O(1),
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as desired.| First observe that if Ry = O or Ry = O, then h(o(R; + Rs)) = h,(R1) +
h.(Ry). Thus assume Ry # O and Ry # O, and set z(R;) = [aq,1] and z(Rs) =
(2, 1]. Then h(o(Ry, R2)) = h([1, a1 +aq, ayas)) and hy(Ry)+h.(R2) = h(ay)+h(as).
Now, just as in the proof of Theorem 8.16 (using the polynomial (7' — a1)(T — az)),
we have

h([1, a1 + ag, aras]) < h(ay) + h(az) + log 2.

This establishes the claim. So we have now proven the theorem when f = x.

For an arbitrary even function f, we argue as follows: Suppose that f,g € K(E) are
even functions. We claim that (deg g)hy = (deg f)hy + O(1). K(z) is the subfield of
even functions in K(E) (see Silverman III, §2.3.1). Thus there exists p(z) in K(z)
such that the following diagram commutes:

| N
P! ——P!

p(x)

Then hy = hyop = (degp)hy + O(1) (via Theorem 8.22). The diagram implies that
deg(f) = deg(z) deg(p) = 2deg(p). So

2h; = 2(deg p)h, + O(1) = (deg f)h, + O(L). (+)

Similarly,
2hy = (deg g)h, + O(1), (xx)

and now the claim follows from () and (k).

From this claim, we have hy = $(deg f)h, +O(1), and now the theorem follows for f
because we've already shown that

he(P+ Q)+ he(P — Q) = 2h.(P) + 2h,(Q) + O(1).

Corollary 8.24 Suppose that F/K is an elliptic curve, and f € K(F) is an even
function.
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(a) Let @ € E(K). Then for all P € E(K), we have
hi(P+ Q) < 2hs(P)+ Og,ro(1).
(b) Suppose m € Z. Then for all P € E(K),

hy([m]P) = m*hy(P) + Op.pm(1).

Proof.
(a) Theorem 8.23 implies that
he(P + Q) = 2hs(P) + 2h(Q) — hs(P — Q) + O(1) < 2hs(P) + O(1)
since h(P — Q) > 0.

(b) It suffices to prove the result for m > 0 since f is even. It is true for m = 0 and
1 plainly! So assume that the result holds for m and m — 1. Applying Theorem
8.23 with P replaced by [m]P and @ by P gives

hy(lm +11P) = =hs([m = 11P) + 2hs([m]P) + 2h f(P) + O(1)
= —((m — 1)* + 2m* + 2)h;(P) + O(1)
= (m+1)*hs(P) + O(1),

as desired.

Theorem 8.25 (Mordell-Weil Theorem.) Let K be a number field, and let £/K be
an elliptic curve. Then E/K is finitely generated.

Proof. We apply Theorem 8.11 (the Descent Theorem) with m = 2. Let f € K(FE)
be any nonconstant even function, and consider hy : E(K) — R. Then h; satisfies
the following properties:

(i) Suppose @ € E(K). Then there exists a constant C (depending only on E, f,
and @) such that for all P € E(K), hy(P+ Q) < 2hs(P) + Cy. (This follows
from Corollary 8.24(a).)
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(ii) There exists a constant Cy (depending only upon £ and f) such that h¢([2]P) >
4hs(P) — Cy. (This follows from Corollary 8.24(b) with m = 2.)

(ili) For every constant Cs, #{P € E(K) | hy(P) < Cs5} < oo. (This follows from
Proposition 8.20.)

The goal is to construct an actual quadratic form on E(K) that differs from hy by a
bounded quantity.

Proposition 8.26 Suppose E/K is an elliptic curve. Let f € K(E) be a nonconstant
even function, and let P € E(K). Then

1 N
degf]\}inio4 hy([2"]P)

exists and is independent of f.

Proof. The strategy is to show that 4=h;([2"]P) is a Cauchy sequence. Corollary
8.24(b) (with m = 2) implies that there exists a constant C' such that for all Q €
E(K), we have

|hp([2]Q) — 4hs (Q)] < C. (1)
Hence if N > M > 0, then
N—
14~V h (2N P) — 4~ Mpy([2M]P Z {47 hy (2" P) — 47"y (127]P) }

N

< > AT HRg([2"TP) — 4hg([27]P))
i

<> 40 (by (1) with Q = [2°]P)
nEM

< —.

< i

Hence the sequence is Cauchy and so converges.
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Suppose now that g € K(F) is another nonconstant even function. Then, from the
proof of Theorem 8.23, we have

(degg)hy = (deg f)hy + O(1).

Hence
(deg g)4~"hy([2V]P) — (deg f)4 N hy([2V]P) =47 NO(1) — 0

as N — oo. Therefore the limit is independent of the choice of f, as claimed.

Definition 8.27 The canonical (or Néron-Tate) height h : E(K) — R is defined by

h(P) L i 4N, ([2M]P).

- deg f N—co

Theorem 8.28 (Néron-Tate.) Let E//K be an elliptic curve.
(a) For all P,Q € E(K),
h(P+ Q)+ h(P — Q) = 2h(P) + 2h(Q)
(the parallelogram law).

(b) For all P € E(K) and for all m € Z, h(Jm]P) = m2h(P).

(¢c) his a quadratic form on E, i.e. h is even, and the pairing (, ) : E(K)x E(K) —
R given by (P, Q) = h(P + Q) — h(P) — h(Q) is bilinear.

(d) Suppose that P € E(K). Then h(P) > 0, and h(P) = 0 iff P € E(K )ors.

(¢) Suppose that f € K(E) is a nonconstant even function. Then (deg f)h =
hy+ OEyf(l).

(f) If B’ : E(K) — R is any other function which satisfies (e) for some nonconstant
function f and (b) for any one integer m > 2, then h' = h.

Proof.

105



(e) From the proof of Proposition 8.26, there exists a constant C' such that N >

M >0, and for all P € E(K) we have

4Ny (2]P) — 4~y (12]P)] < 1o

Set M =0 and let N — oo to obtain
|(deg f)(P) = hy(P)| < C,
as desired.
(a) Theorem 8.23 implies that
hi(P+ Q)+ he(P = Q) = 2hs(P) + 2h;(Q) + O(1).

Replace P by [2"]|P and @ by [2"]@; multiply through by
N — oo. This yields

deg f

~

WP + Q)+ h(P — Q) = 2h(P) + 2h(Q)

(the O(1) disappears).

L_4=N and let

(b) Corollary 8.24(b) implies that hy([m|P) = m?*hf(P) + O(1). Replace P by

[2¥] P, multiply through by —4 N and let N — co. This gives h([m]P)

m2h(P).

(¢) (Linear algebra: Any function satisfying the parallelogram law is quadratic.)
Setting P = 0 in the parallelogram law yields 2(Q) = h(—Q), so h is even. It
suffices to prove that (P + Q, R) = (P, R) + (Q, R). Now we have (using the

parallelogram law and the fact that h is even):

WMP+Q+R)+h(P+R—Q)—2h(P+R)—2h(Q) =
(P—R+Q)+h(P+R—Q)—2h(P)—2h(R—Q) =
)=
)

>

E(P—R+Q)+ (P+R+Q)—2h(P+Q)—2ﬁ(R
2h(R + Q) + 2h(R — Q) — 4h(R) — 4h(Q

Then (1) — (2) + (3) — (4) implies the result.

(1)
(2)
(3)
(4)

(d) Plainly hs(P) >0, so h(P) > 0 for all P € E(K). Suppose that P € E(K )ios.

Then [m]P = 0 for some m > 1, and now (b) gives



Suppose conversely that P € F(K') (K'/K a finite extension) with h(P) = 0.
Then, for every m € Z, we have (from (b)) h([m]P) = m™2h(P) = 0. Now (e)
implies that there exists a constant C' such that for each m € Z, we have

~

hy([m]P) = [ deg(f)h([m]P) = hy([m]P)| < C.

So {P,2P,3P,...} C {Q € E(K') | hy(Q) < C}, and therefore P has finite
order since this last set is finite.

(f) Suppose that fl’ satisfies i/ o [(n] = m2h’ and (deg f)h' = hy 4+ O(1) for some
m > 2. Then W' o [m"] = m*¥ I/ and

}AL/ _ meN}“l/ o [mN]
=m 2N (ho[m"] +0(1))
=h+m2NO(1)

(since h satisfies (b)). Now let N — oo to obtain A’ = h.

Lemma 8.29 Suppose that V' is a finite-dimensional R-vector space, and let L C V'
be a lattice. Let ¢ : V — R be a positive definite quadratic form satisfying:

(i) If P € L, then ¢(P) =0iff P=0.

(ii) For every constant C', #{P € L | ¢(P) < C} < co. Then ¢ is positive definite
on V.

Proof. We may choose a basis of V' such that for any X = (zy,...,2,) € V, we have

s t
q(X) = Z%Q - ng-i-i?
i=1 i=1
where s +¢ < n = dim(V). We may view V ~ R" via this choice of basis. Suppose
that s # n. Let X\ be the length of the shortest vector in L, i.e.
A=inf{q(P)| P € L,P #0}.
Then (i) and (ii) imply that A > 0. Now consider the set

A
B(9) := {(xl,...,xn)ER” x%+-~-+x§§§, x§+1+---+$f§(5}.
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Then length (using ¢!) of any vector in B(9) is at most A/2, and so B(d) N L = {0}.
Now B(6) is compact, convex, and symmetric about the origin, and Vol(B(d)) — oo
as 6 — oo. This contradicts Minkowski’s convex body theorem.

Theorem 8.30 (Minkowski.) Let L be a lattice in R™ with fundamental paral-
lelepiped D, and suppose that B C R" is compact, convex, and symmetric about the
origin. If Vol(B) > 2" Vol(D), then B contains a nonzero point of L.

Proof. We claim that if S is a measurable set in R™ with Vol(S) > Vol(D), then S
contains distinct points « and 3 with o, 3 € L.

Note that
Vol(S) = > " Vol(SN (D + 1)),

leL

D will contain a unique translate (by an element of L) of each set SN (D +¢). Since
Vol(S) > Vol(D), at least two of these sets will overlap, so there exist «, 5 € S such
that o — A = § — X for distinct A, N € L, soa — =X — X € L\ {0}, as claimed.

Now take S = 1B = {Z | z € B}. Then Vol(S) = 5 Vol(B) > Vol(D), so there exist
a, 3 € B such that %—g € L. Since B is symmetric about the origin, —( € B. Since
B is convex, 3(a+ (—3)) € B.

Theorem 8.31 The Néron-Tate height is a positive definite quadratic form on
R® E(K).

Proof. Apply Lemma 8.29 to the lattice E(K)/E(K)ios in F(K) @ R.

Definition 8.32 The Néron-Tate height pairing on E/K is defined by (, ) :
E(K) x E(K) — R, given by (P,Q) = h(P + Q) — h(P) — h(Q).

Definition 8.33 The elliptic regulator Rg/k is the volume of the fundamental
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domain of E(K)/E(K )i with respect to h, i.e. if Py, ..., P, € E(K) form a basis of
E(K)/E(K)tors, then RE/K = det((PZ,P]>) (If r = 0, set RE/K = ].)

Corollary 8.34 Rg/x > 0.
So now we have: E(K) ~ E(K)ios X Z".
Conjecture 8.35 For any fixed K, r can be arbitrarily large.

Conjecture 8.36 Suppose K is a number field, and E/K is a number field. Then
there exists a constant ¢([K : Q]) such that for any point P € E(K) of infinite order,
we have

A~

h(P) = ([K - Q]) max{1, h(jg), log [Nk /o(Ze/x)|},

where Zg /i is the minimal discriminant of E/K.

Theorem 8.37 (Cassels.) Suppose K is a local field with char(K) = 0, char(k) =
p >0, and let /K be an elliptic curve with Weierstralt equation

E:y? + a1zy + asy = 2° + asx® + aux + ag, a; € 0. (1)
Let P € E(K) have exact order m > 2.
(a) If m # p™ for some n, then z(P),y(P) € ok.

(b) If m = p", then 72"z (P), 73" y(P) € o, with

T L?” U—(ZJ)?)”‘IJ '

Proof. First observe that x(P) € ok implies y(P) € o0k, so in this case, there is
nothing to prove. Thus v(z(P)) < 0. Without loss of generality, we may assume that
the Weierstraf equation for F is minimal, for if (2/,y’) are coordinates for a minimal
Weierstrafs equation, then v(z(P)) > v(2'(P)) and v(y(P)) > v(y'(P)).
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(a) (1) implies that 3v(xz(P)) = 2v(y(P)) = —6s (some integer s > 2). Also
v(z(P)) > 0 implies that P € Ey(K) (the kernel of reduction), so P «
—z(P)/y(P) € E(m). But F(m) contains no prime-to-p torsion, so (a) follows.

(b) This follows from a general property of formal groups (see Silverman, Ch. IV,
Theorem 6.1): if —z(P)/y(P) has exact order p™ in E(m), then

oo (0 ¢ U

y(pP) ) — pr—pt

Thus 7%z (P), m3%y(P) € ok, implying the result.

Theorem 8.38 Suppose that K is a number field, and let £/K be an elliptic curve
with Weierstrals equation

E: vy +aizy +asy = 2° + asx® + ayxr + ag, a; € ok for all 4.
Let P € E(K) be a point of exact order m > 2.
(a) If m is not a prime power, then x(P),y(P) € ok.
(b) Suppose m = p" for some prime p. For each finite place v of K, set
)

Then ord,(z(P)) > —2r, and ord,(y(P)) > —3r,, and so if ord,(p) = 0, then
z(P) and y(P) are v-integral.

Theorem 8.39 (Nagell-Lutz.) Suppose E/Q is an elliptic curve with Weierstrafs
equation
E:y* =2+ Az + B, A BeZ.

Let P € E(Q)iom, P # O.
(a) We have z(P),y(P) € Z.
(b) Either 2P = O or y(P)? | (4A% 4+ 27B?).
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Proof.

(a) Set m to be the exact order of P. If m = 2, then y(P) = 0 (chord-tangent
method!), so z(P) is integral, so z(P) € Z since P € E(Q). If m > 2, the result
follows from Theorem 8.38 (r, = 0 for all v).

(b) Assume 2P # O; then y(P) # 0. So applying (a) to P and 2P, we have
z(P),y(P),x(2P) € Z. Set ¢(z) := x* — 2A2* — 8Bz + A? and ¥(x) := 23 +
Az + B so that z(2P) = % (duplication formula — see Silverman III,
§2.3(d)) and f(z)é(x) — g(x)(x) = 4A% + 27B?, where f(x) = 32® + 4A and

g(z) = 32* — 5Ax — 27B. Then
y(P)*[4f (@(P))z(2P) — g(x(P))] = 4A% + 275" (%)

(via the duplication formula). The result follows since all quantities in (x) lie
in Z.
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Chapter 9

Diophantine Approximation on
Elliptic Curves

Proposition 9.1 (Dirichlet.) Suppose @ € R\ Q. Then there exist infinitely many
p/q € Q such that

Proof. Let @ € Z be large, and consider {qae — [qa| | ¢ =0,1,2,...,Q}. Since « is
irrational, the numbers in this set are distinct. There are () + 1 of them, and so the
pigeonhole principle implies that there exist 0 < ¢; < g2 < @ such that

(g — @) — (o — [goa))] < %.
e 0] — lqia) | '
0] — [«
Q2 —q —os (2 — @)@ = (CIQ—Q1)2'

The result now follows, since ) may be taken to be arbitrarily large.
[Hurwitz: q% may be replaced by ﬁqw and this is the best possible.]

Proposition 9.2 (Liouville.) Suppose a € Q with [Q(a) : Q] = d > 2. Then there
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exists a constant C'= C(a) > 0 such that for all 2 € Q, we have

C
E .

E_al>

‘ p
q

Proof. Let f(T) = aqT?+ - -+ ag € Z[T] be the minimal polynomial for «, and set
Cr =sup{f'(t) [ — 1<t < a+1}. Suppose Z— oz‘ < 1. Then

(@)=l () s

via the mean value theorem. Also ¢?f <§> € Z, and certainly f <§> # 0 (since f

can’t have any rational roots). Thus

¢'f <1—9>' > 1. (%)

p
<(C |- -« *
<Gl ()

Thus (*) and (*x*) give

where C' = min{c%, 1}.
Question. If d = 3, what is the best possible exponent?

Definition 9.3 Suppose we are given a function 7 : N — R.y. We say that a number
field K has approximation exponent 7 if the following holds: Suppose a € K with
[K(a) : K] =d. Let v be an absolute value on K, extended to K (a). Then, for any
constant C, there exist only finitely many x € K such that |z —al, < C- Hg(2) "™,
where Hi (z) = [[, max{1, |z|,}"™ and n, := [K, : Q,].

Liouville: Q has approximation exponent d + ¢ for any € > 0.
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Theorem 9.4 (Roth.) For every € > 0, every number field has approximation expo-
nent 2 + ¢.

Example. 23 — 5y = o for some fixed «.. Suppose z,y € Z is a solution, with y # 0.
Then if (3 =1, ( # 1, we have

G- G-) (5-9) -5
(G-)=5Ge0) G-en)

__\/"

for some constant C' independent of x and y. Then Theorem 9.4 implies that there

exist only finitely many possibilities for  and y. Thus the Diophantine equation

2® — 5y> = « has only finitely many solutions with z,y € Z.

SO

SO

_‘ ’37

Definition 9.5 Suppose C/K is a curve with P,Q € C(K,). Let tg € K,(C) be a
function with a zero of order e > 1 at ). The v-adic distance d,(P, Q) from P to @
is d,(P, Q) = min{|tg(P)|v e , 1}. We sometimes write d, (P, tg) instead.

Proposition 9.6 Suppose @ € C(K,), and let tg, t; € K,(C) be functions vanishing
at (). Then
logd,(P,tg)

1' —_—
pec Kl) logd,(P,tg)

to)°
Q)
nor a pole at @, and so |¢(P)[, is bounded away from 0 and co as P — . Hence as

P — @, we have

has neither a zero

Proof. Suppose ordg(tg) = p and ordg(ty) = €'. Then ¢ :=

log dy(P,tg) . log|g(P)|"/*
logd,(P,tg) logd,(P,tg)
as P — Q.
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Proposition 9.7 Suppose C1/K and Cy/K are curves, and that f : C; — Cy is a
finite map defined over K. Let @ € Ci(K,), and set ef(Q)) to be the ramification
index of f at (). Then

logd,(f(P), [(Q))
PECA(i) log d,(P, Q)

= e (Q).

Proof. Let tg € K,(C1) and ty) € K,(C>) be uniformizers at ¢ and f(Q), respec-

tively. Then tyg)o f = t;f(Q)qﬁ, where ¢ € K,(C}) has neither a zero nor a pole at
Q. Thus |¢(P)|, is bounded away from 0 and oo as P — (). Thus

log du(f(P), [(Q)) _ logltso(f(P))l
log du(P, Q) log [t (Pl
_ es(Q)logltq(P)|y +log |d(P)l,
log [tq(P)l.

— ef(Q)
as P — Q.

Theorem 9.8 Suppose C'/K is a curve, f € K(C) is a nonconstant function, and
Q € C(K). Then
log d, (P, Q)

im ————
pec(k) log Hi (f(P))
P—Q

> —2.

[“P — Q" means P — () with respect to the v-adic topology. If @ is not a v-adic
limit point of C'(K'), we define lim = 0.]

Proof. Without loss of generality we may assume f(Q) # oo. (Replace f by 1/f if

necessary, and observe that H (ﬁ) = Hg(f(P)).) Thus

d,(P,Q) = min{|f(P) — f(Q)/*, 1},
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where e = ordg(f — f(Q)) > 1. Thus

fy Jogd(PQ) . log|f(P) — f(Q)]
P log Hx(f(P)) poq elog Hx(f(P))
R {1Og{HK(f(P))2 fP) = F( @)} T}
log Hr (f(P)) '

Roth’s Theorem (Theorem 9.4) implies that if 7 = 2 + ¢, then we have Hy (f(P))T -
|f(P)— f(Q)|, > 1 for all but finitely many P € C(K). Hence

lim logd,(P, Q)
p—q log Hi (f(P))

€ pP-Q

e e

This implies the desired result since € > 0 is arbitrary and e > 1.

Theorem 9.9 (Siegel.) Let E/K be an elliptic curve with F(K) infinite. Suppose

f € E(K) is a nonconstant even function, @ € E(K), and v € M. Then

log d,(P, Q)
im ——==0.
PEE(K) hy(P)
hg(P)—o0
Proof. Let Lo d(P
PeE(K) hf(P)
hy(P)—oo

Now L < 0 since hg(P) > 0 and d,(P,Q) < 1 for all P. Thus it suffices to prove

that L > 0 to deduce that L = 0. Choose a sequence {P;} C F(K) (P;’s distinct)
such that lim; k’g:f’f(#g")“@ = L. Choose m € N large. Then since E(K)/mE(K) is
finite, some coset of E(K)/mE(K) contains infinitely many P,. Thus passing to a
subsequence and relabeling, we have P, = mP] + R, where R € E(K) is independent

of i and P/ € E(K). Now
m*h(P)) = hy(mP}) + O(1) = hy(P, = R) + O(1) < 2hy(P) + O(1), (1)

where the O(1) term is independent of 4, and may be taken to be positive.
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First observe that if P; is bounded away from @) (with respect to the v-adic topology),
then log d,(P;, Q) is bounded, and so L = 0, and we’re done.

Otherwise, by passing to a subsequence, we may assume that F; € @ as ¢ — co. Then
mP] — Q— R, so {P/} has an m" root Q' € E(K), say, of Q — R as a limit point. So,

by passing to a subsequence again, we may assume that P/ — @', with Q = mQ' + R.

Now the map £ — FE given by P — mP + R is unramified (Proposition 3.9(3))
everywhere. Thus Proposition 9.7 implies that

I P
- dy(P;, Q)

M (P~ & ®)

Combining (1) and () gives

' ' Q)
imee hg(F) imoo gm2hy(Fj) + O(1)

Now Theorem 9.8 implies that
/ !/

P log Hi(1(P)
le. log dy(P!. Q')
. 0g Gy IR o %
K Qg ()~ *)
Combining (§) and (x) gives
—4[K : Q] - —4[K : Q]
“m2+0(1) - m?z

Since m is arbitrary, it follows that L > 0.

Theorem 9.10 Suppose E/K is an elliptic curve with Weierstrat coordinate func-
tions z and y. Let S be a finite set of places of K containing the infinite places of K.
Set o s :={x € K |v(x) >0 for all v ¢ S}. Then #{P € E(K) | x(P) € oks} <
00.
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Proof. We apply Theorem 9.9 with f = x. Suppose if possible that { P} is an infinite
sequence of distinct points in E(K) with x(F;) € ok g for all i. Then

1

> log(max{1, [z(F)[;"})

vES

(since v ¢ S implies that |z(F;)[, < 1). Hence, by passing to a subsequence if
necessary, we may assume that h,(P;) < [S|-log|z(F;)|, for all i (note n, < [K : QJ),
where v is a fized absolute value. So |z(F;)|, — 00 as i — oo (there exist only finitely
many points of bounded height). The only pole of = is O, so d,(FP;,0) — 0. x has a
pole of order 2 at O, so we can take d,(FP;,0) = min{|x(P,~)|;1/2, 1} as our distance
function. Thus for all 7z > 0, we have

- IOg dv(Pia Q) > 1
ho(P)  — 2[S]

which is a contradiction since Theorem 9.9 implies that the left side tends to 0 as
1 — 00.

Corollary 9.11 Suppose that C/K is a curve of genus 1, and f € K(C) is any
nonconstant function. Then {{P € C(K) | f(P) € 0k s} < 0.

Proof. Without loss of generality we may extend K and enlarge S. Thus we may
assume C' contains a pole @ of f. So (C, Q) is an elliptic curve over K. Let z and y be
Weierstraft coordinates for (C, Q) with y? = z° + Ax + B. Now [K(z,y) : K(z)] = 2,
and if f € K(z,y) = K(C), then

[, y) =

where ¢,1,n € K[z]. Also ordg(z) = —2, ordg(y) = —3, and ordg(f) < 0, so

2deg(n) < max{2deg ¢,2deg 1) + 3}. (%)

We claim that x satisfies a monic polynomial over K[f]:
(fn(z) — 6(2))* = (U(x) —y)* = ¥(2)*(a" + Az + B).
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Viewed as a polynomial in f, the highest power of z will come from one of the
terms f2n(z)?, ¢(x)?, or ¥(x)?z®. Now (*) implies that deg(f?n(x)?) < deg(¢(x)?) or
deg(v(x)*x?), and deg(¢(x)?) # deg((x)*x®). This implies that the leading terms
of ¢(x)? and ¢ (z)?z* cannot cancel. So, clearing denominators, we have

4" + ap 1 (2" -+ a(f)z + ao(f) = 0,

with a, € oxs and a;(f) € ok g[f] for o < i < n —1. Without loss of generality

we may assume a, € 0y ¢ (by enlarging S if necessary). Suppose P € C(K) satisfies
f(P) € ok,s. Then P is not a pole of f, and

a2 (P)" + ap_1(f(P)z(P)" " + -+ ar(f(P))z(P) + ao(f(P)) = 0,

so z(P) is integral over ox g. Thus 2(P) € K and ok s is integrally closed in K, so
LL’(P) € 0K,S- Thus

{PeC(K)| f(P)€okst C{PeC(K)|x(P) € oks},

and now the result follows from Theorem 9.10.

Example. Consider C : 4> = 23+ Az + B, A, B € Z, 4A3+27B? # 0. Theorem 9.10
implies that this equation has only finitely many solutions with x,y € Z. What does
Theorem 9.9 (i.e. the strong form of Siegel’s Theorem) give us? In Theorem 9.9, we
take @ = O, f = x, and v the infinite place of Q. Suppose that C(Q) is infinite, with
{F} C C(Q) with h(F;) < h(P11). Write 2(F;) = §+ € Q, fractions in lowest terms.
Recall that x has a pole of order 2 at O, so 1/x has a zero of order 2 at O. Thus

b
i 71}
a

i

1
d,(P;,0) = 3 log min {

and
ha(P;) = log max{|a;|, b }.

Now Theorem 9.9 implies that

bi
[e73

. min {log ,O} e )

i~oo max{log |a,|,log |b;|
Now let @, € C(Q) be any point with z(Q;) = 0. Then
a;
1
b ) } )

)

log d,(P;, Q1) = log min {
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and now Theorem 9.9 gives

ai
b;

min {log ,0}
1; =0.
it max{log |a;/, log |b;] -

(%) and (%) imply that

| log |ai| — log [bi|

1. =
i max{log |a;|,log |b;| } b

SO
log |a;] B

oo log b

The upshot of all this is that the numerators and denominators of the points P; tend
to have about the same number of digits as 1 — oo.

Theorem 9.12 Let S be a finite set of places of K, and suppose a,b € K*. Then
the equation
az+by =1 ()

has only finitely many solutions x,y with z,y € OIXQ g

Proof. Choose m € N to be large. Dirichlet’s unit theorem implies that oy ¢/0x"s
is finite. Let c¢1,...,¢,. € OIX<,S be a set of coset representatives. Then if x,y € 0?{,5
is a solution to (f), we may write x = ¢;X™, y = ¢;Y™ (some X,Y € o0y ), and so
(X,Y) is a solution of ac;X™ + be;Y™ = 1. Thus it suffices to prove that for any
a, 8 € K*, the equation

aX"4+pY" =1 (8)

admits only finitely many solutions with X,Y € °[X<,s- Now appeal to the fact that
when m is large, the curve defined by (§) has genus greater than 1, and use Siegel’s
Theorem for curves of large genus.

This proof is ineffective.
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Theorem 9.13 (Siegel.) Suppose f(r) € K[z] is of degree d > 3 and that f(x) has
distinct roots in K. Then the equation y* = f(z) has only finitely many solutions in

0K,S-

Proof. We are certainly at liberty to enlarge S and make a finite extension of K. So
we may assume f(x) =a(x —ay) -+ (x — aq), ; € K, with

(i) a € 0k 5.
(ii) o —aj € o g for i # j.
(ili) ok is a PID.

Thus suppose that z,y € ox s are such that y* = f(z), and let p be a prime ideal
of og . (ii) implies that p divides at most one = — o (since if p divides x — o; and
xr — aj, then p | (a; — ), which is a contradiction). (i) implies that p { a. Thus
y* = a(z — ay1) -+ (r — ;) implies that ord,(z — a;) is even. So (z — a;)ox s = a2,
say, but since og g is a PID, it follows that there exists z; € 0x g and b; € leg g such

that 2 — a; = b;z7. Set L:= K(y/ok.q).

L T

K S

Then b; = 82, B; € or 7, whence x — «; = (3;2;)?. Therefore, taking the difference of
any two of these equations gives:

(r— ;) = (x — o)) = aj — a; = (Bizi — B52;)(Bizi + B;25)-

Now o; — a; € OE,T and (B;z; £ Bjz; € opr. It therefore follows that in fact
ﬂizi + ﬁij S OE,T for all ¢ 7& ]

We appeal to Siegel’s Identity:

Biz1 £ Bazo T Baze £ (323
Brz1 — B3z Biz1 — B323
121408222

Thus Theorem 9.12 implies that there exist only finitely many possibilities for gm_ Bone
(multiplying

=1.

B1z1—P222 : ; shilits az—ai
and G e SO there exist only finitely many possibilities for Grer Do 2
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the above numbers together), so there exist only finite many possibilities for 3z, —
(323, so there exist only finitely many possibilities for

1 3 — (1

Brzr = 5 |(Biz1 — B3z3) + Bz — oz |

2
so there exist only finitely many possibilities for z = a; + (8121)?, so there exist only
finitely many possibilities for y.

9.1 Effectivity

Theorem 9.14 (Gelfond-Schneider.) Suppose a, 3 € Q with a # 0,1 and 3 € Q.

Then o” is transcendental.

Aliter. If aq, as € Q% and if log a1 and log ag are linearly independent over Q, then

they are linearly independent over Q, i.e. }Ogﬁ is either rational or transcendental.
og a2

Theorem 9.15 (Baker.) Suppose that ay,...,a, € K* and (4,...,5, € K. For
any constant k, set

T(K) = T(Kj01, ..., B1,y ooy Bn) = R([L, By -, Bal )R([L, aq,y - . )"

Suppose that (G logay + - - - + 8, log a,, # 0. Then there exist effectively computable
constants C(n, [K : Q]) and x(n, [K : Q]) > 0 such that

|Bilogag + -+ Bplogay| > O™,
(K — C with absolute value | - |.)

Lemma 9.16 Let V' be a finite dimensional R-vector space. Suppose e = (eq, ..., €e,)
is a basis of V', and define
n
>
i=1

(sup norm). Suppose f = (fi,..., f,) is another basis of V. Then there exist constants
1,02 > 0 (depending on e and f) such that for all z € V,

lzlle =

e

allzlle < llzfle < cafle.
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Proof. Let A = (a;;) be such that e; = 37| a;; f; (change of basis matrix), and set
| Al = max; ; |a;;|. Thenif x =3 " xe; € V, we have © = )", x;a;; f;, whence

irj=
|lz||e = mjax{ inazj
i

and the other equality follows by symmetry.

} < nmax{ |ag;|} - max{|zi|} = nllAll - [lz]le,

Application. Let S be a finite set of places of K. Assume S contains the infinite

places, s := [S], a1,...,a,1 form a basis of 0y ¢/ (0% g)tors- S0, if a € of g, then

a=Ca™---al", where ( is a root of unity. Define m(«a) := max;{|m;|}.

Lemma 9.17 There exist constants c;,co > 0 (depending only on K and S) such
that for all @ € og g, we have ch(a) < m(a) < coh(a).

Proof. Suppose S = {vi,..., v}, and set n; := n,, = [K,, : Q,,]. Define p, : 0fc ¢ —
R* by a +— (nyvy(a), ..., nsvs(a)). ThenIm(ps) € H = {x1+- - -+xs = 0} and Im(p;)
spans H. Let || - ||; be the sup norm on R* with respect to the standard basis and
|| - ]2 the sup norm on R* with respect to the basis {ps(a1), ..., ps(as—1), (1,...,1)}.
Lemma 9.16 implies that there exist constants c¢q,co > 0 such that

cllzllh < |lzllz < ezl for all x € R”. (%)
Now if a € oy ¢ with
ps(oz) = ZmiPS(ai)a
i=1

then
[ps(@)]l2 = max{|m;|} = m(a),
los(@)[l1 = max{n;|vi(a)l},

and

h.(a) = Z max{0, —n,;v;(a)}.

123



o If v = (xy,...,25) € H, then

h(z) = max{0,—z;} <> |zi| < sl

e z; = max{0, z;} — max{0, —x;}.

Thus summing, and using Y z; = 0, gives 0 = h(—z) — h(z). Thus h(z) = h(—x).
So

2h(z) = h(z) + h(—z)
= (max{0, —z;} + max{0,z;})

=D _lu
> max{|x;| }
= ||z
Thus 1
Sllelly < h(z) < sllz]. (%)

Now combining (x) and (x*) gives us what we want.

Theorem 9.18 Suppose a,b € K*. Then there exists an effectively computable
constant C' = C(K, S, a,b) such that any solution «, 3 € oy ¢ of the S-unit equation
ac + b = 1 satisfies H(a) < C.

Proof. Set s = |S|. Suppose a, 3 is a solution, and let v € S be such that |a], is
maximal. Then

a9 > T] max{1,|allr} = Hi(a),  |ay > Hi(a)V". (1)
weS

We make the simplifying assumption that v is archimedean. Now apply the Mean
Value Theorem to log x to obtain

1

o min{fzly, ylo}

log x — logy
r—Yy
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Set * = aav and y = —bf3. Then x — y = 1, and so
|log(aa) —log(bB)|, < min{|aal,, lac —1],} 7" < 2(Ja| - H(a)'*)™! (2)

from (1), and assuming |a| > 2|a| (otherwise we’d have a good bound on H(«)).

Choose a basis a1, ..., a, 1 of 0 /(0 ¢)iors and write a = (af" - - ca) b and B =

’
Ms—1

WMo 7" (where ¢ and ¢’ are roots of unity). Substituting into (2) yields
1 1

Z(mi —m;) log a; + log (Z_CC’)

)

< e H(a)™s, (3)

where ¢ is an effectively computable constant depending only upon K, S, a, and b.
Next observe that since aa + b3 =1,

1
a

ha) = h ( §ﬂ> <h(p) +C,

so |h(a) — h(B)| < ¢, and we apply Lemma 9.17 to both « and (3 to obtain
csm(a) <m(B) < cam(a).
This in turn implies
Im; = mi| < m(a) +m(B) < csh(a). (8)
Set g; :=m; —m; and v := a(/b¢’. Then (3) gives
| log g + - + qe_1 log ey + logy| < ey H(a)™V5, (4)

where a1,..., a1 and 7 are fixed, and ¢; € N satisfies |¢;| < esh(a). Now apply
Theorem 9.15 (i.e. Baker’s Theorem). This implies that

\q1log oy + -+ - + o1 log as_1 +logy| > ¢4 7, (5)

where 7 = h([1,q1,...,qs—1])R([1, a1, ..., as_1,7])", where k is a constant depending
only upon K and s. Now (§) implies that

R([L,q1, ... qs-1]) = logmax{l, |q],...,|gs—1|} <log(es — h(a)). (6)
Thus (4), (5), and (6) give

C;IOg(Csh(a)) < ClH(a)_l/s

Y

125



so H(«a) < cgh(a)®, i.e. H(a) < ¢i9log H(a), so we have a bound on H(«).

Theorem 9.19 For any a,b € K*, the equation
aX™+0Y™m =1 (8)

has only finitely many solutions X, Y € 0}27 g if m is large.

Proof. Suppose (§) has infinitely many solutions X,Y" € oy ¢. The idea is to show

that X/Y is too good an approximation to (—b/a)'/™. Since S is finite, there exists
some w € S such that (§) has infinitely many solutions X,Y € 0;(7 ¢ such that

Yo = max{[Y[}"[ve S}

Fix an m*"™ root o of —b/a. Then
1 Xm™ b X™ " X
=y ta =1l (?—CO‘>-

If Y is “large,” then at least one of % — (o is “small.”

We claim that “only one of % — (a can be small.” For suppose (, (" € u,, are distinct.
Then

X X
‘?—CCY +?—CCY

w w

> ”C/O‘ - Calw > Ol(K> 57 m) (T)
Therefore

. Ol m—1
> | min | =

(since (f) implies that all but one of the terms in the product must be at least C/2).

A consequence is that
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Since p,, is finite, there is some & € p,, such that there exist infinitely many solutions
X,Y € o0 g of (§) such that

1 X e
W = 2y~ fa (1)

Cy

w

(i.e. X/Y is a good approximation to «).

Recall that w was chosen to maximize |Y|"». Hence (since |Y|, = 1 for all v ¢ 5)

Y] = max[Y]e

1/s
> (H |Y|2v) (s = #5)

vES

1/s
(1)
all v

= H(Y)"* (88)

Thus we can compute
xm 1 b
Hy|— )| =H - -
(=) = (7 -3)
coman () e (2)
aYm™ a
‘ 1 1 b
soman () () (2)
ym a a

1

Hi (;) < Cy(K, S, m) - Hy (?) — Cy(K, S, m) Hic(Y).

Taking m'™® roots yields

Now applying (§§) gives
X 1/s
Y > CulK, S m)Hy (7) .

Substituting this into (1) yields

Nw

Cs

AT 2|7 e

Y
w
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and Roth’s Theorem implies that this is only satisfied by finitely many X, Y if m is
large.

Theorem 9.20 (Shafarevich.) Let K be a number field, and let S be a finite set of
places of K, with S,, € S. Then, up to isomorphism over K, there are only finitely
many elliptic curves £/ K that have good reduction away from S (i.e. good reduction
at all primes not in S).

Proof. Without loss of generality, we may assume
e S contains all primes above 2 and 3.
L] CI(OK’S) = 1.

Then we may write E : y? = 23+ Az + B with A, B € ox g and A = —16(4A3+27B?).
Aok, = Pp/k0k,s, Where D/ is the minimal discriminant of E/K, so A € OIXQS
since F has good reduction away from S. Now suppose E /K, Ey /K, . .. is a sequence
of elliptic curves, and that F;/K has good reduction away from S. Let

Ei Zy2 :.CE3+AZ.T+BZ7 AZ,BZ € 0K.,S, AZ = —16(4A?+27B3),
Aijok,s = DE,/kOK,s, A; € fogs- (1)

By passing to a subsequence if necessary, we may assume that all of the A; have the
same image in the (finite!) group oy ¢/(0% ¢)'?, i.e. we may write

A; = OD}?, C fixed, D; € o 5. (1)

Now (1) and (1) imply CD}? = —16(4A2 + 27B?), so

—44;\° 12B;\?
(7)) (%)
D: Db

—124;\*  [/108B;\? s o
o (Z2A)' (IBY oy

SO

—12A; 108B;
DY » DS
i i

X3 —27C. Theorem 9.13 (Siegel’s Theorem) implies that there are only finitely many
such points, so there are only finitely many possibilities for A;/D} and B;/D¢. But if

2 3
—& = 5t and —gg = 5% then we have E; — E; given by = — (%) ',y — (—g]) Y.
g J 3 J

so for each i, the point ( > is an S-integral point on the curve Y? =
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So the sequence contains only finitely many K-isomorphism classes of elliptic curves.

Corollary 9.21 Let E/K be a fixed elliptic curve. Then there are only finitely many
elliptic curves E'/K that are K-isogenous to E.

Proof. Corollary 6.38 implies that if £/ and £’ are K-isogenous, then they have the
same set of primes of bad reduction. The result now follows from Theorem 9.20.

Corollary 9.22 (Serre.) Suppose that /K is an elliptic curve without complex mul-
tiplication. Then for all but finitely many primes ¢, the group E[¢] has no nontrivial
Gal(K /K )-invariant subgroups, i.e. the representation p, : Gal(K/K) — Aut(E[/]) ~
GLy(F)) is irreducible.

Proof. If &, C E[{] is a nontrivial Gal(K /K )-invariant subgroup, then ®, ~ Z/(Z,
since E[(] ~ (Z/VZ)*. Theorem 3.11 implies that there exists an elliptic curve E;/K
and a K-isogeny ¢, : £ — FE, such that ker(yp,) = ®,. Corollary 9.21 implies that
the curves F, fall into finitely many isomorphism classes since each E, is isomorphic
to E. Suppose then that E, ~ Ey, and consider the following sequence of maps:
P
E ﬁ E[ >~ E[/ é .
This is an element of End(FE) of degree (deg ¢,)(deg @p) = . Since E does not have
complex multiplication, End(E) ~ Z, every element of End(FE) has degree n?, and

so it follows that £ = ¢'. So if ¢ # (', Ey % Ey, and therefore there are only finitely
many primes for which ®, can exist.

Conjecture 9.23 (Frey.) Let E/K be an elliptic curve. Then there are only finitely
many pairs (E;, p;) consisting of

e An elliptic curve E;/K which is not isogenous to E.

e A prime p; > 5 such that E[p;] ~ E;[p;] as Gal(K /K )-modules.
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Definition 9.24 (Darmon.) Say that an integer n has the isogeny property (rela-
tive to a number field K) if the implication

E[n] ~ E'[n] as Gal(K/K)-modules = E is isogenous to E’ (%)

holds for all elliptic curves F, E'/ K.

Conjecture 9.25 (Darmon.) Given any global field K, there exists a constant M
such that all n > My have the isogeny property.

Say that n satisfies the weak isogeny property if (x) holds with at most finitely
many exceptions.

Conjecture 9.26 (Darmon.) There exists an absolute constant M such that all
n > M have the weak isogeny property over all number fields K.
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Chapter 10

Geometric Interpretation of
Cohomology Groups

Basic Idea. Let E/K be an elliptic curve (K a number field, say). We have an exact
sequence

E(K)
T WE(K)

We will try to understand these cohomology groups geometrically.

— HYK,E,) — H' (K, E),, — 0.

To a genus one curve C'/K, we associate an elliptic curve E/K = Jac(C), the Jaco-
bian of C'

There is a bijection III(E/K) < {curves C/K of genus 1 such that Jac(C) = E, and
the Hasse principle fails for C/K}.

General Principle. H'(K,?) < ‘Objects over K that become isomorphic over K
to a fixed object with automorphism group “7”.’

Definition 10.1 Let G be an abelian group. A (right) G-set P is called a G-torsor
(or a principal homogeneous space for G) if P # @& and the map P x G — P x P
given by (p,g) — (p,p + g) is bijective (i.e. for every pair P;, P, € P, there exists a
unique g € G such that P, + g = P,).
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Example. The addition map G x G — G makes G a G-torsor (the trivial G-torsor).
Definition 10.2 A morphism ¢ : P — P’ of G-torsors is just a map of G-sets.

Some basic properties:

(a) For any points m € P,n’ € P’, there is a unique morphism P — P’ such that
p(m) ='.

(b) Every morphism P — P’ is an isomorphism.

(c) For any point m € P, there is a unique morphism G — P (of G-torsors) such
that 0 +— .

(d) Any element g € G defines an automorphism 7 — 7 + g of P. Every automor-
phism of P is one of this form, for some g € G.

Consequence. Aut(P) = G for any G-torsor P.

Definition 10.3 Let E/K be an elliptic curve. An E-torsor is a curve C'// K together
with a right action of E given by a regular map C' x E — C given by (w, Q) — w+Q
such that the map C' x E'— C x C given by (w, @) — (w,w + Q) is an isomorphism
of algebraic varieties.

Consequence. For any extension L/K, C(L) = @ or C(L) is an E(L)-torsor (as
sets).

A morphism of E-torsors is a regular map ¢ : C' — (" such that the following
diagram commutes:

CxE——C

<P><idEl isﬁ’

C'x BE—(C"
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All the statements made following Definition 10.2 hold in this setting.

Remark. If C is an E-torsor and w € C(K) is any point, then there is a unique
morphism £ — C (of E-torsors) such that O — w, and this morphism is an isomor-
phism. So C'is trivial iff C(K) # @.

10.1 Classifying E-Torsors

Suppose that C'is an E-torsor over K, and choose a point wy € C (K). For any
o € Gal(K/K), we have o(wy) = wo + f(0) (f(0) € E(K) unique). Then

(07)(wo) = o(7(wo)) = o(wo + f(7)) = wo + f(0) + o f(7),
and (o7)(wp) = wo + f(o7) (from the definition of f). So
flor) = flo) +af(7),

ie. f:Gal(K/K)— E(K) is a 1-cocycle. wg has coordinates in a finite extension of
K, so f is continuous.

Suppose we choose w; € C(K). Then w; = wy + P for some P € E(K). Thus
o(w) = o(wo+ P) =wo+ f(o) +0(P) =w + f(o) +0(P)— P,

so f and f; differ by a coboundary, so the cohomology class of f depends only upon
C.

Suppose [f] € HY(K, E) is zero. Then f(c) = o(P) — P for some P € E(K). Then
o(wo — P) = o(wy) — o(P) =wy +0(P) = P —0o(P)=w— P,

so wyg — P € C(K), so C is a trivial E-torsor.

Theorem 10.4 The map Y222t (K E) given by C' + [f] is a bijection,
sending the trivial E-torsor to the zero element.
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Proof. We'll come back to this later, if ever.

Remark. Set WC(E/K) to be equal to the set of isomorphism classes of E-torsors
over K. The group structure on WC(E/K) may be described concretely as follows:
Suppose C,C" € WC(E/K). Define CAC" to be equal to the quotient by the diagonal
action of E. So Ol x C'(R
— K K
(€ n o) = SRR

~Y

where (w,w') ~ (w+ Q,w' + Q), @ € E(K). Then C A C’ represents C' + C’ in
WC(E/K).

10.2 Geometric Interpretation of H(K, E,)
Definition 10.5 An n-covering is a pair (C, ) consisting of
e An E-torsor C.

e A regular map o : C — E defined over K such that for some w; € C(K) we

have a(wy + P) = [n|P for all P € E(K).

A morphism (C,a) — (C’,a') of n-coverings is a morphism ¢ : C' — C” of E-torsors
such that o = o/.

For o € Gal(K/K), we have o(w;) = w; + f(0), f(o) € E(K).

Check that f is an F(K)-valued 1-cocycle.

We have a(o(wy)) = a(wy + f(0)) = [n]f(0) and a(o(w)) = o(a(w)) = o(a(w; +
0)) =0, so [n|]f(c) =0, ie. f(o) € E,. w; is unique up to translation by Q € E,,
so [f] € HY(K, E,) is independent of wy.
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Theorem 10.6 The map {n-coverings}/ ~— H'(K, E,) given by (C,«a) — [f] is a
bijection.

Proof. Write WC(E,,/K) for the set of n-coverings of £ modulo isomorphism, and
consider the forgetful map WC(E,/K) — WC(E/K) given by (C,«) — C.

Exercise.

(a) Show that this map defines a surjection

WC(E,/K) — WC(E/K),. (1)

(b) Show that the fibers of () are E(K)/nE(K)-torsors.

For example, if C'is trivial, then there exists wy € C(K) with a(wg) € E(K). If wy €
C(K), then wy; = wy+ P for some P € E(K), so a(w;) = a(wy+ P) = a(wy) + [n] P,
so a(wg) € E(K)/nE(K) is well-defined.

Now consider the following diagram:

WC(E,/K)—~WC(E/K),
0 jj}{% HY(K,E,) ——> HY(K, E),, —0.

The diagram commutes, so o maps the fibers of 3 into the fibers of 7. These fibers
are F(K)/nE(K)-torsors, so « is bijective on each fiber, so « is bijective on the entire
set.

10.3 Twisting

Problem. Given an elliptic curve /K, find all elliptic curves E’/K that become
isomorphic to E over K. (E’ is called a twist of E.)

135



Example. Consider the elliptic curves F : y?> = f(x), FEy : dy* = f(z). The change
of variables © +— z, y — y+/d show that E ~ E; over K (/d).

In order to apply cohomology, we need to understand Aut(FE, O).

Proposition 10.7 We have

pe(K) if j(E) =0,
Autg(E,0) = { uu(K) if j(B) = 1728,
pa(K) if j(E) # 0 or 1728,

Proof. See Silverman III, §10.

Fix E/K, and let E'/K be an elliptic curve such that there is an isomorphism ¢ :
E = E over K If o € Gal(K/K), then 0 := o0po~" : E = E'is also an isomorphism
over K. We have cp = po (o), a(o) € Autiz(E,O). Observe that

(07)p = a(rp) = a(poa(r)) = poa(s)-alar),

whence a(o7) = a(o)o(a(r)), i.e. a: Gal(K/K) — Autg(E,O) is a 1-cocycle.

Check that choosing a different ¢ replaces « by its composite with a coboundary.

Theorem 10.8 The map
{F'/K such that £ ~; E'}

~

— H'(K, Autg(E, )

is a bijection.
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Corollary 10.9 If j(E) # 0 or 1728, then every twist of E is of the form F, as in
the example above.

Proof. Autiz(E,0) = {£1} = ps, and H' (K, us) ~ K*/(K*)* under the corre-
spondence in Theorem 10.8 given by E; — d (mod K*?).

Remark. Set Aut(FE) to be the group of all automorphisms of E (not necessarily
preserving O). Then E(K) — Aut(E), @ — 7¢ (translation by Q).

Claim. Aut(E) = E(K) x Aut(E, O), i.e.
(a) E(K) < Aut(E),
(b) E(K) N Aut(E,0) = {0},
(c) Aut(E) = E(K) - Aut(E, O).

Proof.
(a) Suppose Q € E(K) and y € Aut(E,O). Then for any P € E(K),
(aorgoa™)(P)=a(a™(P)+ Q) =P+ a(Q) = Toq)(P),
and so E(K) < Aut(E).
(b) Clear.

(c) Let v € Aut(F), and set v(O) = (). Then we have yo 79 o (1_g o 7v) = 7, and
T_govy € Aut(E, O).

Theorem 10.10 Let C'/K be a nonsingular projective curve of genus 1. Then there
exists an elliptic curve Ey/K such that C' is an Eg-torsor. The curve Ey is unique up
to K-isomorphism.
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Proof. (Sketch.) There exists an isomorphism ¢ : C = FE over K, where E/K
is an elliptic curve E : y?> = 2% +ax + b, a,b € K, A = 4a® + 270> # 0. For
any 0 € Gal(K/K), we have op : 0C = C = oFE, so E ~ C = o¢(C) ~ o(E),
so j(E) = j(o(E)) = o(j(E)), so j(E) € K. Choose a curve Ey/K such that
J(Ep) = j(E). (Such a curve certainly exists — see Theorem 4.13.)

The problem is that Ey might be the wrong curve. We fix this by twisting. Choose
an isomorphism v : By — C over K. For o € Gal(K/K), let

By~ C—£0(C) = C
be ¥ o a(c), where a(o) € Autg(Ep). Then o — «(o) is an Auti(Fp)-valued 1-

cocycle of Gal(K/K). This gives us some [a] € H'(K,Autg(Ep)). The Remark
implies that there is an exact sequence

1 — Ey(K) — Autg(Ep) — Autz(F,0) — 1,

S0
HY(K, Ey) — H'(K, Autg(Ey)) — H'(K, Autg(E, O))
is exact, where the last map is defined by [ — [fc;]. If [fc\)z/] = 0, then [o] € H'(K, Ey),

and C' is an Ey-torsor. If [a] # 0, we can twist Ey by [a] to obtain a new curve Ej.
Check that [o] € H(K, E}), so C is an F; torsor.

Remark. Autjz(F) is noncommutative in general.

10.4 HYG, M) for M Noncommutative

A l-cocycle is a map f : G — M such that f(o1) = f(o) - o(f(7)) for all 0,7 € G.
Say that two 1-cocycles f and g are equivalent if there exists an m € M such that
g(o) = m™ - f(0) - o(m). Define H'(G, M) to be the set of equivalence classes of
1-cocycles. This is a pointed set, with distinguished element o — 1.

138



