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0.1 Introduction

These notes are based on a graduate course on probability theory and stochastic
processes I took from Professor Raya Feldman in the Fall of 2005. The primary
textbook was Adventures in Stochastic Processes by Sidney Resnick. Other recom-
mended books were Probability and Random Processes by Geoffrey Grimmett and
David Stirzaker, Probability: Theory and Examples by Richard Durrett, A First
Course in Stochastic Processes by Samuel Karlin and Howard Taylor, and Proba-
bility by Leo Breiman.
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Chapter 1

Generating Functions and
Branching Processes

1.1 Generating Functions

Generating functions are the main tool of dealing with sums of discrete nonnegative
integer valued random variables. Let X be a nonnegative integer valued random
variable {0, 1, . . .} with probabilities pk = Pr{X = k}, k = 0, 1, 2, . . . The generating
function of X is

PX(s)
∆
= E(sX) =

∞∑
k=0

skpk, s ≥ 0.

We have the following properties:

1. PX(s) is an increasing function of s on s ≥ 0, PX(0) = p0 = Pr(X = 0), and
PX(1) = 1.

2. PX(s) is convex on s ≥ 0 assuming P (X ≥ 2) > 0. We have P ′
X(s) =∑∞

k=1 ksk−1pk ≥ 0 and P ′′
X(s) =

∑∞
k=2 k(k − 1)sk−2pk ≥ 0. The last inequality

is strict if Pr(X ≥ 2) > 0.

3. pk = Pr(X = k) =
P

(k)
X (0)

k!
.

4. E[X(X − 1) · · · (X − n + 1)] =
∑∞

k=n k(k − 1) · · · (k − n + 1)pk = p
(n)
X (1).
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5. If X1, . . . , Xn are independent random variables with values in {0, 1, 2 . . .} and
Sn = X1 + · · ·+ Xn, then

PSn(s) = E(sX1+···+Xn)

= E(sX1sX2 · · · sXn)

= EsX1EsX2 · · ·EsXn

= PX1(s) · · ·PXn(s).

6. Let {Xn} be independent identically distributed random variables with values
in {0, 1, 2, . . .}, each with generating function PX(s). Let N ≥ 0 be integer-
valued and independent of the {Xn}. Let Pr(N = j) = αj for j = 0, 1, 2 . . ..
Then PN(s) =

∑∞
j=0 sjαj. Let SN = X1 + · · ·+XN . Then PSN

(t) = PN(PX(t)).

Proof. We have PSN
(t) = E(tSN ). By the tower property, we have E(X) =

E(E(X | Y )). Hence

E(tSN ) = E(E(tSN | N))

=
∞∑

j=0

E(tSj | N = j)αj

=
∞∑

j=0

αjE(tX1+···+Xj | N = j)

=
∞∑

j=0

αjE(tX1+···+Xj)

=
∞∑

j=0

αj(E(tX1))j

=
∞∑

j=0

αj(PX(t))j

= PN(PX(t)),

as desired. �
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1.2 Branching Processes (Galton-Watson-Bienaymé)

The Galton-Watson-Bienaymé branching process is the simplest stochastic model for
population growth. A family starts with one progenitor (one founding member) who
forms generation 0.

1. Z0 = 1.

2. The family sizes of the individuals {Zn,j} are independent and identically dis-
tributed. Zn,j is the size of the jth family in the nth generation.

Zn is the size of the nth generation. We therefore have Zn = Zn,1+Zn,2+ · · ·+Zn,Zn−1 .

Of course, Z1
∆
= Zn,j. We set Pr{Zn,j = k} = pk for k = 0, 1, 2, . . . for all n and j.

We let P (s) =
∑∞

k=0 skpk be the generating function for each Zn,j. The mean is
m = EZn,j, and σ2 = Var(Zn,j).

Theorem 1.1 Let Pn(s) = E(sZn) be the generating function on Zn. Then Pn+m(s) =
Pm(Pn(s)) = P (P (P (· · · (P (s)) · · · ))).

Proof. Let SN = X1 + · · · + XN so that PSN
(s) = PN(PX(s)). We have Zn =

Zn,1 + · · · + Zn,Zn−1 . Then {Zn,j} are independent identically distributed random
variables with generating function P , and Zn−1 is independent of {Zn,j} and has gen-
erating function Pn−1. Thus Pn(s) = Pn−1(P (s)) = Pn−2(P (P (s))) = · · · . �

1.3 Moments of Zn

Let mn := E(Zn). Thus m1 = m = EZn,j. Then mn = mn and

Var(Zn) =

{
nσ2 if m = 1,

σ2(mn − 1)mn−1(m− 1)−1 if m 6= 1.
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Proof. We have

E(Zn) = P ′
n(1)

= [Pn−1(P (s))]′s=1

= P ′
n−1(P (1))P ′(1)

= P ′
n−1(1)m

= mn−1m.

We also have

Var(Zn) = EZ2
n − (EZn)2

= E[Zn(Zn − 1)] + EZn − (EZn)2

= P ′′
n (1) + mn −m2n,

and the result follows. �

1.4 Probability of Extinction

Definition. By extinction, we mean an event that the random sequence {Zn} con-
sists of zeros for all but finitely many values of n.

Mathematically, {extinction} = {Zn = 0 for some n} = {Z1 = 0 or Z2 = 0 or
· · · } =

⋃∞
n=1{Zn = 0} =

⋃∞
n=1 An, where An = {Zn = 0}. The sequence {An} is

monotonic:
{Zn = 0}︸ ︷︷ ︸

An

⊆ {Zn+1 = 0}︸ ︷︷ ︸
An+1

⊆ {Zn+2 = 0}︸ ︷︷ ︸
An+2

⊆ · · · .

Hence limn→∞ Pr(An) = Pr (
⋃∞

n=1 An) exists. Let

π = Pr({extinction}) = Pr

(
∞⋃

n=1

{Zn = 0}

)
= lim

n→∞
Pr(Zn = 0) = lim

n→∞
Pn(0)

and πn = Pr(Zn = 0) = Pr(An). Clearly π = limn→∞ πn.

Theorem 1.2 π = Pr(extinction) = limn→∞ Pr(Zn = 0) is the smallest nonnegative
root of the equation s = P (s). If m = E(Z1) < 1, then π = 1 (this is the subcritical
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case). If m = 1 and σ2 > 0, then π = 1 (this is the critical case). If m > 1, then
π < 1 (this is the supercritical case). (We assume that 0 < p0 = Pr(Z1 = 0) < 1. If
p0 = 1, then all die, and π = 1. If p0 = 0, then there are no deaths, so π = 0.)

If m < 1, then E(Zn) = mn ↓ 0. If m > 1, then E(Zn) = mn ↗ ∞. Then Z0 → 0
with probability π, and Zn →∞ with probability 1− π.

Proof. We show that π = P (π). We have Pn(s) = P (Pn−1(s)). If s = 0, then
πn = Pn(0) = P (Pn−1(0)) = P (πn−1). We have

πn = Pr(Zn = 0) ≤ Pr(Zn+1 = 0) = πn+1. (∗)

So {πn} is increasing: 0 ≤ πn ≤ 1, πn ↑ π. By (∗), P (s)
s→s0−→ P (s0).

We now show that π is the smallest nonnegative root of s = P (s). Let q ≥ 0 be
another root, so q = P (q). We show that π ≤ q. On s ≥ 0, P (s) is nondecreasing: If
q ≥ 0, then q = P (q) ≥ P (0) = π!. Since q ≥ π1, we have q = P (q) ≥ P (π1) = π2, so
q ≥ π2, and so forth. Hence q ≥ πn for each n. Therefore q ≥ π.

Now let y(s) = P (s)− s. We have y(1) = 1− 1 = 0, and y′(1) = P ′(1)− 1 = m− 1.
If m > 1, then y′(1) > 0, so y is increasing, so y(s) < 0 for s < 1. Therefore P (s) < s
for s < 1 near s = 1. In this case, π < 1. If m < 1, then y′(1) < 0, and y is decreasing.
If s < 1, then y(s) > 0, so P (s) > s, and π = 1. If m = 1, then y′(1) = 0. We have

P (s) = P (1) + (s− 1)P ′(1) +
(s− 1)2

2!
P ′′(1 + θ(s− 1)),

the second-order Taylor expansion in a neighborhood of 1. Thus P (s) = 1+(s− 1)+
(s−1)2

2!
P ′′(1 + θ(s− 1)) = 1 + (s− 1)+(something nonnegative)≥ s, so π = 1. �

1.5 Instability of Zn

The result of Theorem 1.2 is that Pr(extinction) = π < 1 when m > 1.
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Question. What happens when there is no extinction?

Theorem 1.3 No matter what the finite value of m = EZn,j is, we have Pr(Zn =

k)
n→∞→ 0 for all k = 1, 2, . . . Moreover, Zn →∞ with probability 1− π, and Zn → 0

with probability π.

Question. What is the rate of growth when Zn →∞?

Theorem 1.4 If m > 1 and EZ2
n,j < ∞, then the random variables Wn := Zn

mn → W
almost surely, where W has finite EW = 1, Var(W ) > 0.

If n is large, then Zn ∼ mnW ; thus log Zn ∼ n log m + log W (which is linear in n).
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Chapter 2

Markov Chains: Definitions and
Examples

2.1 Definitions

A stochastic process is a random process evolving in time. Mathematically, it is a
collection of random variables indexed by time X = {Xt, t ∈ T}. Here all Xt’s are
random variables on the same probability space (Ω,F , P ), and they all take values
in the same state space S. In this section, S is a finite or countable set, so the Xi’s
are discrete random variables. We also assume that T = {0, 1, 2, . . .} is discrete.

To describe the probabilities of such a process, we can consider Pr(X0 = i0, X1 =
i1, . . . , Xn = in) for all n, i0, . . . , in ∈ S. Equivalently, we have

• an initial distribution {ak} = {Pr(X0 = ik)}, ik ∈ S.

• transition probabilities qn(in | i0, . . . , in−1) = Pr(Xn = in | X0 = i0, . . . , Xn−1 =
in−1).

So then Pr(X0 = i0, X1 = i1, . . . , Xn = in) = ai0q1(i1 | i0)q2(i2 | i0, i1) · · · qn(in |
i0, . . . , in−1).

A Markov chain is a stochastic process that satisfies the Markov property:

Pr(Xn = in | X0 = i0, . . . , Xn−1 = in−1) = Pr(Xn = in | Xn−1 = in−1).

Here Xn−1 is the last observed value, or the present case, X0, . . . , Xn−2 are the past,
and Xn is the value of tomorrow.
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We generally make the additional assumption of time-homogeneity. A Markov chain
is time-homogeneous (or has stationary transition probabilities) if

Pr(Xn = in | X0 = i0, . . . , Xn−1 = in−1) = Pr(Xn = in | Xn−1 = in−1)

= Pr(X1 = in | X0 = in−1)

= pin−1,in .

Then
Pr(X0 = i0, X1 = i1, . . . , Xn = in) = ai0pi0,i1pi1,i2 · · · pin−1,in .

The pij’s are the one-step transition probabilities.

We define the transition matrix to be P = (pij)i,j∈S. P and the initial distribution
a = (ak)k∈S determine the distribution of the chain.

Note. The matrix P is stochastic:

1. 0 ≤ pij ≤ 1 for all i, j ∈ S.

2.
∑

j∈S pij = 1 for all i ∈ S. (The rows sum to 1.)

2.2 Examples.

1. Independent trials. Let Xn be independent identically distributed random vari-
ables with probability mass function {ak}. Then

Pr(Xn = in | X0 = i0, . . . , Xn−1 = in−1) = Pr(Xn = in) = an.

We have pin−1,in = an. The transition matrix is

P =
a0 a1 a2 · · · ak · · ·
a0 a1 a2 · · · ak · · ·
· · · · · · · · · · · · · · · · · ·

.
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2. Galton-Watson Branching Process. Let Zn = Zn,1 + Zn,2 + · · ·+ Zn,Zn−1 , where
Zn,j are independent identically distributed with probability mass function pk,
Z0 = 1, generating function P (s), and state space S = {0, 1, 2, . . .}. Then

Pr(Zn = in | Z0 = 1, Zi = i1, . . . , Zn−1 = in−1)

= Pr(Zn,1 + · · ·+ Zn,in−1 = in | Z0 = 1, . . . , Zn−1 = in−1)

= Pr(Zn,1 + Zn,2 + · · ·+ Zn,in−1 = in)

= pin−1,in .

If we let Zn,1 = Y1, . . . , Zn,in−1 = Yin−1 , then Y1, . . . , Yin−1 are independent
identically distributed random variables. Then PP

Zn,j
(s) = (P (s))in−1 .

3. Random walk. Let {ξi} be independent identically distributed random vari-
ables, and let Pr(ξi = k) = ak for k ∈ Z. We let our state space be S = Z.
Start with X0 = 0 and let Xn = Xn−1 + ξn = ξ1 + ξ2 + · · ·+ ξn. Then

Pr(Xn ≡ Xn−1 + ξn = j | X0 = 0, . . . , Xn−1 = in−1)

= Pr(Xn = in−1 + ξn = j | X0 = 0, . . . , Xn−1 = in−1)

= Pr(ξn = j − in−1)

= aj−in−1 .

We call a random walk simple if ξi = +1 with probability p and ξi = −1 with
probability q = 1− p. We say a simple random walk is symmetric if p = q = 1

2
.

4. Random walk with reflecting boundary. Consider a “random walker” moving
along {0, . . . , N}. If 0 < i < N , let pi,i+1 = p and pi,i−1 = q = 1 − p. Let
p0,1 = pN,N−1 = 1.

5. Random walk with absorbing boundary (gambler’s ruin chain). Let S = {0, . . . , N}.
We have the same probabilities as above except that p0,0 = pN,N = 1.

6. Random walk on a graph. Let G be a finite unoriented simple graph with vertex
set S. We let S be the state space, and we define transition probabilities by

pvi,vj
=

{
0 vi is not adjacent to vj,

1
d(vi)

vi is adjacent to vj.
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Chapter 3

Long-Term Evolution of Markov
Chains

Definition. Define n-step transition probabilities by

p
(n)
ij = Pr(Xm+n = j | Xm = i).

Define the n-step transition matrix by P (n) = (p
(n)
i,j ). We have P (1) = P .

We have

a
(n)
j := Pr(Xn = j)

=
∑
i∈S

Pi(X0 = i) Pr(Xn = j | X0 = i)

=
∑
i∈S

aip
(n)
ij ,

or an = ap(n).

Chapman-Kolmogorov Equation. We have

p
(n+1)
ij = Pr(Xn+1 = j | X0 = i)

=
∑
k∈S

Pr(Xn = k | X0 = i) Pr(Xn+1 = j | Xn = k)

=
∑
k∈S

p
(n)
ik pkj.
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If n = 1, then we have p
(2)
ij =

∑
k pikpkj. Hence P (2) = P · P = P 2. In general,

P (n) = P n. Therefore P (n+m) = P n·Pm = P (n)P (m). We therefore have the Chapman-
Kolmogorov Equation

p
(n+m)
ij =

∑
k∈S

p
(n)
ik p

(m)
kj .
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Chapter 4

Decomposition of the State Space

Questions.

• Which states can be reached from a starting point j?

• If one state is reachable from another, is there a return path?

Definition. Let τj = min{n ≥ 0 : Xn = j} be the first hitting time of state j (the
first passage time). Let τB = min{n ≥ 0 : Xn ∈ B} be the first hitting time of a set
B. Then τj and τB are discrete random variables taking the values 0, 1, 2, . . . We say
τj = ∞ if Xn never visits j.

Definition.

1. State j is accessible from i or i communicates with j (and we write i → j)
if Pr(τj < ∞ | X0 = i) > 0.

2. States i and j (inter-)communicate (and we write i ↔ j) if i → j and j → i.

3. A set of states C is irreducible if for all i, j ∈ C, i ↔ j. A Markov chain is
irreducible if i ↔ j for all i, j ∈ S.

4. A set of states C is closed if for all i ∈ C, j 6∈ C, pij = 0 (the chain never
leaves C) if and only if for all i ∈ C, Pi(τCc = ∞) = 1.

5. State i is absorbing if pii = 1 (i.e. if {i} is a closed set).
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Examples.

1. Random walk with absorbing boundaries (gambler’s ruin chain). Let N = 3
and S = {0, 1, 2, 3}. We have

P =


1 0 0 0
q 0 p 0
0 q 0 p
0 0 0 1

 , a = (0, 1, 0, 0).

Then {0} and {3} are absorbing. We have 1 ↔ 2 and 2 → 3, but 3 6→ 2. There
are three classes of communicating states: {0}, {1, 2}, and {3}.

2. Random walk with reflecting boundaries. Let S = {0, 1, 2, 3}. Then

P =


0 1 0 0
q 0 p 0
0 q 0 p
0 0 1 0


is irreducible.

Lemma 4.1 We have i → j if and only if there exists n ≥ 0 such that p
(n)
ij = Pr(Xn =

j | X0 = i) > 0.

Proof. We first show the reverse direction. We know that there exists an n > 0 such
that p

(n)
ij > 0. We show that Pi(τj < ∞) > 0. We have {Xn = j} ⊆ {τj ≤ n} ⊆ {τj <

∞}. So

Pi(Xn = j) ≡ p
(n)
ij ≤ Pi(τj < ∞).

Since p
(n)
ij > 0, we also have Pi(τj < ∞) > 0.

We now show the forward direction. We know that i → j. We show that there exists
an n > 0 such that p

(n)
ij > 0. Assume that p

(n)
ij = 0 for all n = 0, 1, 2, . . . We show
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that i 6→ j, i.e. Pi(τj < ∞) = 0. Then

Pi(τj < ∞) = lim
n→∞

Pi(τj ≤ n)

= lim
n→∞

Pi

(
n⋃

k=0

{Xk = j}

)

≤ lim
n→∞

n∑
k=0

Pi(Xk = j)

= lim
n→∞

n∑
k=0

p
(k)
ij

= 0.

We conclude that Pi(τj < ∞) = 0, so i 6→ j, which is a contradiction. �

4.1 Equivalence Classes

1. Recall that i ↔ j means that there exist n, m > 0 such that p
(n)
ij > 0 and

p
(m)
ji > 0.

2. The relation ↔ is an equivalence relation; that is, it is reflexive (i ↔ i), sym-
metric ((i ↔ j) ⇒ (j ↔ i)), and transitive (if i ↔ j and j ↔ k, then i ↔ k;
this follows from Chapman-Kolmogorov).

3. This equivalence relation partitions the space S into disjoint equivalence classes.
Pick a state, say i0. Put all states i such that i ↔ i0 into C0. Pick a state
i1 ∈ S \ C0. Put all states i ↔ i1 into C1. Continue the process. Then
S =

⋃
i Ci, and Ci ∩ Cj = ∅ if i 6= j.
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Chapter 5

Classification of States

5.1 Reducibility

Definition. A state i is called recurrent or persistent if Pi(Xn = i for some
n ≥ 1) = 1. A state is transient if Pi(Xn = i for some n ≥ 1) < 1.

We can also define these terms by using halting time τj(1) := min{n ≥ 1 : Xn = j}.
Then i is recurrent if Pi(τi(1) < ∞) = 1 and transient if Pi(τi(1) = ∞) > 0.

Question. For recurrent states, how long does it take to return?

Definition. Let

f
(n)
ij := Pi(τj(i) = n) ≡ Pi(X1 6= j, X2 6= j, . . . , Xn−1 6= j, Xn = j).

Set f
(0)
ij = 0. Let

fij =
∞∑

n=1

f
(n)
ij ≡

∞∑
n=1

Pi(τj(1) = n) ≡ Pi(τj(1) < ∞).

Note that i is recurrent if and only if fii = 1.
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Definition. The mean recurrent time is

mi := Ei(τi(1)) =

{∑∞
n=1 nPi(τi(1) = n) =

∑∞
n=1 nf

(n)
ii i recurrent,

∞ i transient.

Definition. A recurrent state is non-null or positive recurrent if mi < ∞ and
null if mi = ∞.

5.2 Calculations

We now present a recursive algorithm for calculating the f
(n)
ij ’s. We have

f
(n)
ij =

{
pij n = 1,∑

k 6=j pikf
(n−1)
kj n > 1.

Proof. Suppose n = 1. Then f
(1)
ij = Pi(τj(1) = 1) = Pi(X1 = j) = pij. Now suppose

n > 1. Then

f
(n)
ij = Pi(τj(1) = n)

= Pi(X1 6= j, . . . , Xn−1 6= j, Xn = j)

=
∑
k 6=j

Pi(X1 = k,X2 6= j, . . . , Xn−1 6= j, Xn = j)

=
∑
k 6=j

Pi(X2 6= j, . . . , Xn−1 6= j, Xn − j | X1 = k)Pi(X1 = k)

=
∑
k 6=j

pikf
(n−1)
kj ,

as desired. �

Proposition 5.1

• For all i, j ∈ S, p
(n)
ij =

∑n
k=1 f

(k)
ij p

(n−k)
jj whenever n ≥ 1.
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• For all 0 < s < 1 and i 6= j, Pij(s) = Fij(s)Pjj(s), while Pii(s) = 1+Fii(s)Pii(s).

Proof.

•

p
(n)
ij = Pi(Xn = j)

=
n∑

k=1

Pi(Xn = j, τj(1) = k)

=
n∑

k=1

Pi(Xn = j | τj(1) = k)Pi(τj(1) = k)

=
n∑

k=1

Pr(Xn = j | X0 = i, X1 6= j, . . . , Xk−1 6= j, Xk = j)f
(k)
jj

=
n∑

k=1

f
(k)
ij f

(n−k)
jj ,

as desired.

•
∞∑

n=1

snp
(n)
ij =

∞∑
n=1

sn

(
n∑

k=1

f
(k)
ij p

(n−k)
jj

)

=
∞∑

k=1

∞∑
n=k

sn−kp
(n−k)
jj skf

(k)
jj

=
∞∑

k=1

skf
(k)
ij

∞∑
m=0

smp
(m)
jj

= F
(s)
ij Pjj(s),

as desired. �

Proposition 5.2

1. j is recurrent iff
∑∞

n=0 p
(n)
jj = ∞ iff fjj = 1. If this holds, then

∑
n p

(n)
ij = ∞ for

all i such that fij > 0.
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2. j is transient iff
∑

n p
(n)
jj < ∞ iff fjj < 1. If this holds, then

∑
n p

(n)
ij < ∞ for

all i.

Proof. We show only (1).

1. We have
lim
s↗1

Pjj(s) = lim
s↗1

∑
n

snP
(n)
jj =

∑
n

p
(n)
jj .

Also

lim
s↗1

Pjj(s) = lim
s↗1

1

1− Fjj(s)
.

Also
lim
s↗1

(1− Fjj(s)) = 0

iff Fjj(1) =
∑

n f
(n)
jj = fjj = 1. If i 6= j, then∑

n

p
(n)
ij ≡ Pij(1) = Fij(1)Pjj(1) = fij

∑
n

p
(n)
jj = ∞

iff fij > 0 and
∑

n p
(n)
jj = ∞, as desired. �

5.3 Markov and Strong Markov Property

We called (Xn) a homogeneous Markov chain if

Pr(Xn+1 = j | X0 = i0, . . . , Xn = in) = Pr(Xn+1 = j | Xn=1 = in) = ¶in(Xn = j) = pin,j.

Then
Pr(X0 = i0, . . . , Xn = in) = ai0pi0,i1pi1,i2 · · · pin−1,in .

Write δi = (δij, j ∈ S).
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Theorem 5.3 (Markov Property.) Let (Xn) be a Markov chain with parameters

(a, P ). Then, conditional on Xm = i, (X̃n := Xm+n)n≥0 is Markov with parameter
(δi, P ) and is independent of the random variables X0, . . . , Xm.

Proof. Take A = {X0 = i0, . . . , Xm = im}. We show that

Pr({X̃0 ≡ Xm = j0, . . . , X̃m ≡ Xm+n = jn} ∩ A | Xm = i)

= Pr({X0 = j0, . . . , Xn = jn} | X0 = i) Pr(A | Xm = i)

≡ δij0pj0j1 · · · pjn−1jn Pr(A | Xm = i).

We have

LHS =
Pr(X0 = i0, . . . , Xm = im = i, . . . , Xm+n = jn and im = j0 = i)

Pr(Xm = i)

= Pr(Xm = j0, Xm+1 = j1, . . . , Xm+n = jn | X0 = i0, . . . , Xm−1 = im−1, Xm = im)

× Pr(X0 = i0, . . . , Xm−1 = im−1, Xm = im and im = i)

Pr(Xm = i)
δij0

= δij0pj0j1 · · · pjn−1jn Pr(A | Xm = i).

5.3.1 Stopping Time

Definition. A random variable T : Ω → {0, 1, 2, . . .} ∪ {∞} is called a stopping
time if the event {Tn} depends only on X0, . . . , Xn (for n = 0, 1, 2, . . .).

Example.

• T = τj(1) = min{n ≥ 1 : Xn = j} is a stopping time since {T = n} ≡ {τj(1) =
n} = {X1 6= j, . . . , Xn−1 6= j, Xn = j} depends on X1, . . . , Xn.

• T = τj(1)−1 is not a stopping time since {T = τj(1)−1 = n} = {τj(1) = n+1}
depends on Xn+1.
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5.3.2 Strong Markov Property

Theorem 5.4 Let X = (Xn)n≥0 be Markov with parameters (a, P ), and let T be a

stopping time of X. Then, conditional on {T < ∞} and XT = i, (X̃n = XT+n)n≥0 is
Markov with parameters (δi, P ) and is independent of X0, . . . , XT−1.

Proof. Let A be an event determined by X0, . . . , XT . We want to show that

Pr({X̃0 = XT = j0, . . . , X̃n = Xpn = jn} ∩ A | T < ∞, XT = i)

= Pr({X0 = j0, . . . , Xn = jn | X0 = i) Pr(A | T < ∞, XT = i).

We have

LHS =
∞∑

m=0

Pr({XT = j0, . . . , XT+n = jn} ∩ A ∩ {T = m} ∩ {XT = i})
Pr(T < ∞, XT = i)

=
∞∑

m=0

Pr({Xm = j0, . . . , Xm+n = jn} ∩ A ∩ {T = m})
Pr(T < ∞, XT = i)

=
∞∑

m=0

Pr(X0 = j0, . . . , Xn = jn | X0 = i) Pr(A ∩ {T = m} ∩ {XT = i})
Pr(T < ∞, XT = 1)

= RHS,

as desired. �

5.4 Excursions

Assume X0 = i. Then τi(1) = min{n ≥ 1 : Xn = i}. On {τi(1) < ∞}, de-
fine τi(2) = min{n > τi(1) : Xn = 1}. On {τi(1) < ∞, . . . , τi(n) < ∞}, define
τi(n + 1) = min{m > τi(n) : Xm = i}. The block (Xτi(n−1)+1, . . . , Xτi(n)) is the nth

excursion. The length is αn = τi(n)− τi(n− 1), and α0 = 0, αi = τi(1).

Proposition 5.5 Conditional on τi(1) < ∞ and τi(2) < ∞, random vectors (α1, X1, . . . , Xτi(1))
and (α2, Xτi(1)+1, . . . , Xτi(2)) are independent and identically distributed.
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5.5 Recurrence and the Number of Visits to a State

Let Nj =
∑∞

n=1 I{Xn=j} be the number of visits to state j after time zero. Define

1A = χA = IA =

{
1 ω ∈ A,

0 ω 6∈ A.
Calculate

EiNj =
∞∑

n=1

EiI{Xn=j} =
∞∑

n=1

Pi(Xn = j) =
∞∑

n=1

p
(n)
ij .

Then the result Proposition 5.2 says that when starting from j (X0 = j), j is recurrent
iff

EjNj ≡
∞∑

n=1

p
(n)
ij = ∞.

Proposition 5.6 For all i, j ∈ S and k ≥ 0,

Pi(Nj = k) =

{
1− fij k = 0,

fij(fjj)
k−1(1− fjj) k = 1.

Conclusions. If j is transient (fjj < 1), i.e. Nj ∼ Geom(fjj),

• Pj(Nj = k) = fk
jj(1− fjj) for k ≥ 0.

• EiNj ≡
∑∞

n=1 p
(n)
ij =

fij

1−fjj
< ∞.

• For all i, Pi(Nj < ∞) = 1 or Pi(Nj = ∞) = 0. (The chain returns to state j
finitely often.)

If j is recurrent, then

• Pj(Nj = k) = 0 for all k.

• Pj(Nj < ∞) = 1, i.e. Pj({Xn = j} infinitely often) = 1.
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Proof. Pi(Nj = 0) = 1−fij, the probability that the chain never hits j from i. Then

Pi(Nj ≥ n + 1 | Nj ≥ n) ≡ Pr(j was hit at least n times — known; j was hit at least once more)

= Pr(returning to j from j at least once)

= fjj.

The rest follows easily. �

5.6 Periodicity

Example. Simple random walk with steps ±1. The chain can only return to state 0
on even steps.

Definition.

• The period of a state i is defined as d(i) = gcd{n ≥ 1 : p
(n)
ii > 0}.

• If d(i) = 1, then i is aperiodic.

• If d(i) > 1, then i is periodic.

• A state is ergodic if it is positive recurrent and aperiodic.
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Chapter 6

Canonical Decomposition

Proposition 6.1 If i ↔ j, then

1. i and j have the same period.

2. i is transient if and only if j is transient.

3. i is null recurrent if and only if j is null recurrent.

Proof. See pages 92–93 of Resnick. �

Proposition 6.2 The state space S may be decomposed as S = T ∪C1∪C2∪· · · (see
Section 4.1, part (iii)), where T is the set of transient states (not necessarily one class
of intercommunicating states), and C1, C2, . . . are closed, disjoint, irreducible classes

of recurring states. If j ∈ Cα, then fjk =

{
1 k ∈ Cα,

0 otherwise.
For each class Cα, we obtain

a stochastic matrix Pα by considering only rows and columns of P for states in Cα.
Then after reordering states, P can be written as

P =


P1 0 · · ·
0 P2 · · ·
...

... · · ·
Q1 Q2 · · ·

 .

Transitions from states in T are governed by the matrices Qi.
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Example. Gambler’s ruin chain, S = {0, 1, 2, 3}. In this case, C1 = {0}, C2 = {3},
and T = {1, 2}. Then we have

P =


1 0 0 0
0 1 0 0

1/2 0 0 1/2
0 1/2 1/2 0

 .

The rows and columns, in order, correspond to states 0, 3, 1, 2.

Note. If X0 ∈ Cα, since the chain never leaves Cα, it can be taken as the whole
space.

6.1 Finite Markov Chains

Lemma.

1. If S is finite, then at least one state is recurrent.

2. All recurrent states are positive.

For all i,
∑

j∈S p
(n)
ij = 1. We can then let n →∞ to obtain

∑
j∈S

(
limn→∞ p

(n)
ij

)
= 1.

If j is transient, then p
(n)
ij

n→∞−→ 0.

If S is finite, first look for all recurrent states. At least one exists by the Lemma.
Look for all states which intercommunicate with this one.

6.2 Random Walk Example

Consider a simple random walk. Let ξi be independent and identically distributed,
with Pr(ξi = 1) = p and Pr(ξi = −1) = 1−p = q. We set S0 = 0 and Sn = ξ1+· · ·+ξn.
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The strong law of large numbers tells us that if xii are independent and identi-

cally distributed and Eξ2
i < ∞, then Pr

({
ω : 1

n

∑n
i=1 ξi(ω)

n→∞−→ Eξi = µ
})

= 1. If

p = q = 1/2, then Pr(Sn/n → 0) = 1. If p 6= q, then Pr(Sn/n → p − q 6= 0) = 1.
In particular, if p > q, then Sn(ω) → +∞ for almost all ω, and if p < q, then
Sn(ω) → −∞ for almost all ω.

We can conclude that for asymmetric random walks (p 6= q), 0 is transient. Therefore

every state is transient. However, if p = q, then Sn(ω)
n

→ 0.

Lemma. If p = q = 1/2, then 0 is recurrent.

Proof. By Proposition 5.2, 0 is recurrent iff
∑

n p
(n)
00 = ∞. We have p

(2n+1)
00 = 0. We

also have

p
(2n)
00 =

(
2n

n

)(
1

2

)2n

.

Stirling’s formula tells us that n! ≈
√

2πn
(

n
e

)n
. Hence p

(n)
00 ≈ 1√

πn
. This implies that∑

n p
(n)
00 = ∞.

Definition. The d-dimensional symmetric random walk is given by S0 = 0, Sn =
ξ1 + · · ·+ξn, where ξi = (ξ

(1)
i , . . . , ξ

(d)
i ) ∈ {−1, 1}d. The components are independent

and identically distributed. Hence Pr(ξi = (i1, . . . , id)) =
(

1
2

)d
, where each id = ±1.

Lemma. For symmetric random walks in Zd, 0 is recurrent if d = 1 or 2; 0 is tran-
sient if d ≥ 3.

Proof. We have

p
(2n)
00 = P0(S2n = 0) = (P0(S

(1)
2n = 0)d) ' (πn)−d/2.

Hence we have ∑
n

p
(n)
00 ' c

∑ 1

nd/2
=

{
∞ d = 1, 2;

finite d ≥ 3.
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6.3 Branching Process Example

Let (Zn) be a Galton-Watson branching process. We have Z0 = 1 and Zn =
Zn,1 + · · ·+ Zn,Zn−1 .

Theorem 6.3 Let p1 = Pr(Zn,j = 1) < 1. Then Pr(Zn = j)
n→∞−→ 0 for j = 1, 2, . . .

Proof. This is a question of classification of states. 0 is absorbing and hence recur-
rent. We now show that j = 1, 2, . . . are transient. We have p

(n)
ij

n→∞−→ 0. We have
transience if and only if

fjj = Pr(Zm+n = j for some n ≥ 1 | Zm = j) < 1.

Suppose that p0 = Pr(Zn,j = 0) = 0 (i.e. there are no deaths without children). Then

f
(1)
jj = Pr(Zm+1 = j | Zm = j) = (p1)

j. We have f
(2)
jj = Pr(Zm+1 6= j, Zm+2 = j |

Zm = j) = 0, so f
(n)
jj = 0 for n ≥ 2. Hence fij = f

(1)
ij = (p1)

j < 1.

Now suppose p0 = Pr(Zn,j = 0) < 1. Then {Zm+n = j for some n ≥ 1} ⊆ {Zm+1 >
0}. Then

fjj ≤ Pr(Zm+1 > 0 | Zm = j) = 1− Pr(Zm+1 = 0 | Zm = j) = 1− (p0)
j < 1,

as desired. �
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Chapter 7

Steady State

The goal of this chapter is to work out the long-term behavior of the chain. What
happens when n is large?

7.1 Stationarity of a Markov Chain: Stationary

Distributions

Definition. {Yn, n ≥ 0} is (strictly) stationary if for all integers m ≥ 0, k > 0, we

have (Y0, . . . , Ym)
∆
= (Yk, . . . , Yk+m), i.e. distribution doesn’t change under time-shift

translation.

Definition. A vector π = (πj, j ∈ S) is a stationary distribution of the Markov chain
(·, P ) if

1. πj ≥ 0,
∑

j∈S πj = 1 (distribution),

2. π = πP , i.e. πj =
∑

i∈S πipij for all j ∈ S.

Note. πP 2 = (πP )P = πP = P , and in general πP n = π.

Proposition 7.1 Denote by Pπ the distribution of the Markov chain (π, P ), i.e.
Pr(X0 = j) = πj or Pπ(·) =

∑
j∈S πj Pr(· | X0 = j). With respect to Pπ, (Xn) is a
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strictly stationary process:

Pπ(Xn = i0, . . . , Xn+m = im) = πi0pi0i1 · · · pim−1im ≡ Pπ(X0 = i0, . . . , Xm = im).

Proof.

LHS =
∑
i∈S

πi Pr(Xn = i0, . . . , Xn+m = im | X0 = i)

=
∑
i∈S

πip
(n)
ii0

pi0i1 · · · pim−1im

= πi0pi0i1 · · · pim−1im ,

as desired. �

Definition. A vector γ = (γj, j ∈ S) is an invariant measure if

1. γj ≥ 0,

2. γ = γP .

(Of course, if
∑

γi < ∞, then πi = γiP
γj

is a stationary distribution.)

7.2 A Fundamental Result on the Existence and

Uniqueness of Invariant Measures and Station-

ary Distributions

Theorem 7.2 An irreducible Markov chain has a stationary distribution π iff all
states are positive recurrent. In this case, π is the unique stationary distribution and
is given by πj = 1

mj
, j ∈ S, where mj = Eiτj(1). Also in this case, the equation

π = πP has a positive root which is unique up to a multiplicative constant, and for
which

∑
xi < ∞. If the chain is irreducible but null recurrent, the previous statement

holds, but
∑

xi = ∞.

Proof.
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1. We first show that for a transient irreducible Markov chain, a stationary dis-
tribution doesn’t exist. Suppose πP n = π, so πj =

∑
i∈S πip

(n)
ij . Letting n →∞,

we have p
(n)
ij → 0 (since the chain is transient). Hence πj =

∑
i∈S πi limn→∞ p

(n)
ij =

0 for all j, which contradicts the assumption that
∑

πj = 1.

2. For an irreducible recurrent Markov chain, we construct an invariant measure.
Consider one excursion i → i. Define N

(i)
j =

∑∞
n=1 1{Xn=j}∩{τj(1)≥n}, and let

γ
(i)
j =

∑∞
n=1 Pi(Xn = j, τj(1) ≥ n) = EjN

(i)
j be the expected number of visits

to j between two successive visits to i. Note that N
(i)
i = 1, γ

(i)
i = 1, τi(1) =∑

j∈S Nj(1), and

mi(1) = Eiτi(1) =
∑
j∈S

EiN
(i)
j =

∑
j∈S

γ
(i)
j . (∗)

We prove that γ(i) = (γ
(i)
j , j ∈ S) is invariant: γ(i) = γ(i)P . Set `

(n)
ij := Pi(Xn =

j, τi(1) ≥ n) so that γ
(i)
j =

∑∞
n=1 `

(n)
ij . If n = 1, we have `

(1)
ij = Pi(X1 = j, τi(1) ≥

1) = pij. If n ≥ 2, we have `
(n)
ij =

∑
k 6=i ell

(n−1)
ik pkj. Then we have

γ
(i)
j =

∞∑
n=1

`
(n)
ij

= pij +
∞∑

n=2

∑
k 6=j

`
(n−1)
ik pkj

= pij +
∑
k 6=i

(
∞∑

n=2

`
(n−1)
ij

)
pkj

= γ
(i)
i pij +

∑
k 6=i

γ
(i)
k pkj.

We have showed that γ
(i)
j =

∑
k γ

(i)
k pkj.

3. If i is positive recurrent, i.e. mi = Eiτi(1) < ∞, then by (∗) we have
∑

j γ
(i)
j =

mi < ∞, and so {γ(i)
j /mi, j ∈ S} is a stationary distribution.

4. For all recurrent states i, we show that 0 < γ
(i)
j < ∞. Since the Markov chain

is irreducible, for each j ∈ S there exists an m > 0 such that p
(m)
ji > 0. Since

γ(i) = γ(i)Pm, we have

1 = γ
(i)
i =

∑
k∈S

γ
(i)
k p

(m)
ki ≥ γ

(i)
j p

(m)
jj > 0,
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so γ
(i)
j ≤ 1

p
(m)
ji

< ∞ for all j. Since i → j, there exists an m so that p
(m)
ij > 0. So

γ
(i)
j =

∑
k

γ
(i)
k p

(m)
kj ≥ γ

(j)
i pm

ij = p
(m)
ij > 0.

5. If a Markov chain is irreducible and recurrent, then an invariant measure γ is
unique up to a multiplicative constant; if γ = γP and µ = µP (0 < µj < ∞),
then µ =const·T . (The proof is in Resnick.)

6. From (5), it follows that γ(i) =const·γ(k) for all i, k ∈ S. Since γ
(i)
i = 1 in the

positive recurrent case, πi =
γ
(i)
i

mi
= 1

mi
. �

Remarks.

1. If we have an irreducible Markov chain which is recurrent, then there exists
an invariant measure γ so that γ = γP which is unique up to a multiplicative
constant Cγ = (cγ)P . If the Markov chain is positive recurrent, then

∑
j γj <

∞, and there exists a unique stationary distribution πj =
γjP
γj

. If the Markov

chain is null recurrent, then
∑

γj = ∞, and there is no stationary distribution.
(If the Markov chain is transient, then there is no stationary distribution.)

2. Because the Markov chain can be decomposed into S = T ∪C1 ∪C2 ∪ · · · , it is
enough to consider irreducible Markov chains.

3. We have a new method to calculate mean recurrence times: mj = 1
πj

, where

π = πP .

4. We have a new method to determine whether an irreducible Markov chain is
positive recurrent: solve π = πP . See whether there exists a unique solution so
that

∑
j πj = 1.
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7.3 Examples

There is no uniqueness without irreducibility. Consider the gambler’s ruin chain
S = {0, 1, 2, 3} with

P =


1 0 0 0
.5 0 .5 0
0 .5 0 .5
0 0 0 1

 .

Take α ∈ [0, 1], and set πα = (α, 0, 0, 1 − α). Then παP = πα. Hence there are
infinitely many stationary distributions.

Consider the simple symmetric random walk on Z. We showed that it is recurrent,
but we can now show that it is null recurrent. First note that it is irreducible with

pij =

{
1/2 |i− j| = 1,

0 otherwise.
If it is positive recurrent, then there must be a unique sta-

tionary distribution. We must then have πj = 1
2
πj−1 + 1

2
πj+1. Thus π = (1, 1, . . .) is

an invariant measure. Since
∑

πj = ∞, there is no stationary distribution; hence the
chain is null recurrent.

Consider the asymmetric random walk on Z with pij =


p j = i + 1,

q = 1− p j = i− 1,

0 otherwise.

As-

sume that p > q. We showed that the chain is transient, and it is also irreducible.
Suppose π = πP . Then πj = qπj−1 + pπj+1. We can check (see the problems) that

π + j = A+B
(

p
q

)j

is a solution for all A, B > 0. There are infinitely many invariant

measures. See Karlin and Taylor for more details.
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Chapter 8

Limit Theorems

Questions.

• Does limn→∞ p
(n)
ij exist?

• Do we visit j “at n = ∞”?

We know that if j is transient, then limn→∞ p
(n)
ij = 0, and if the limit distribution

exists, it must be stationary.

Lemma 8.1 If for all j, p
(n)
ij → π)j, where (πj) is a distribution, then π = (πj, j ∈ S)

is a stationary distribution.

Proof.

• Suppose S is finite. Then if p
(n)
ij → πj, then (πj) is a distribution because

1 ≥ πj ≥ 0, and we have∑
j

πj =
∑

j

lim
n→∞

p
(n)
ij = lim

n→∞

∑
j

p
(n)
ij = 1,

where we can interchange the sum and the limit because the sum is finite. We
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then have

πj = lim
n→∞

p
(n)
ij

= lim
n→∞

∑
k

p
(n−1)
ik pkj

=
∑

k

(
lim

n→∞
p

(n−1)
ik

)
pkj

=
∑

k

πkpkj.

Hence the distribution is stationary.

• For the proof when S is countable, see pages 126–127 of Resnick. �

For periodic states, the limit might not exist.

Example. Let S = {0, 1} and

P =

(
0 1
1 0

)
.

Then the period is d = 2, so p
(n)
11 = (0, 1, 0, 1, . . .). Hence limn→∞ p

(n)
ii does not ex-

ist. Note that there exists a unique stationary distribution π = (1/2, 1/2) and that

p
(2n)
ii = lim 1 = 1 = 1/2 · 2 = dπi.

Theorem 8.2 (Ergodic Theorem.) Let (Xn) be an irreducible positive recurrent
Markov chain with stationary distribution π. If the chain is aperiodic, then there
exists limn→∞ p

(n)
ij = πj = 1

mj
. If the chain is periodic with period d, then for all

i, j ∈ S, there exists an integer r with 0 ≤ r ≤ d such that p
(n)
ij = 0 unless n = md+ r

for some m ≥ 0, and there exists limn→∞ p
(md+r)
ij = dπj = d

mj
. For null recurrent

chains, these results hold with mj = ∞, namely there exists limn→∞ p
(n)
ij = 0 in the

aperiodic case, and there exists limn→∞ p
(md+r)
ij = 0 in the periodic case.

Note. If (Xn) is irreducible and aperiodic, the stationary distributions exist iff the

chain is positive recurrent iff the limit distributions exist, so that p
(n)
ij → πj.
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Note. If (Xn) is irreducible, aperiodic, and finite, then it is positive recurrent, its

stationary distributions exist, and p
(n)
ij → πj.

Note. In the ergodic case, p
(n)
ij → πj = 1

mj
, and chain forgets its origin:

Pr(Xn = j) =
∑

i

Pr(X0 = i)p
(n)
ij

n→∞−→
∑

j

Pr(X0 = i) lim
n→∞

p
(n)
ij .

Proof of Theorem 8.2 We use the coupling method.

1. “Couple” X with Y , creating a Markov chain Y with stationary distribution
π, and let ξn = (Xn, Yn). Let X0 = i for some i. Y starts according to π:
Pr(Y0 = j) = πj. X and Y are independent. By the problems, (ξn) is a Markov
chain on S × S with transition probabilities (p̃(i,j)(k,`) = pikpj`) and stationary
distributions π̃(i,k) = πiπk (and (ξn) is positive recurrent).

2. Fix i0 ∈ S, and set τ := min{n ≥ 0 : Xn = Yn = i0}. Then τ is the first hitting
time of (ξn) to (i0, i0). Because (ξn) is positive recurrent, Pr(τ < ∞) = 1. By the
strong Markov property for ξn, ξτ+n = (Xτ+n, Yτ+n) is Markov with parameters

(δ(i0,i0), P̃ ) and is independent of (X0, Y0), . . . , (Xτ , Yτ ). The main point is that

Xτ = Yτ = i0, and both have transition matrix P , so (Xτ+n)n≥0
∆
= (Yτ+n)n≥0.

3. We show that

|p(n)
ij − πj| = |Pr(Xn = j)− Pr(Yn = j)| n→∞−→ 0.

Note that Pr(Yn = j) = πj because (Yn) is Markov with parameters (π, P ). We
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have

|Pr(Xn = j)− Pr(Yn = j)| ≤ |Pr(Xn = j, τ ≤ n)− Pr(Yn = j, τ ≤ n)|
+ |Pr(Xn = j, τ > n)− Pr(Yn = j, τ > n)|

= 0 + |Pr(Xn = j, τ > n)− Pr(Yn = j, τ > n)|
= E(1{Xn=j}1{τ>n} − 1{Yn=j}1{τ>n})

≤ E
(
|1{Xn=j} − 1{Yn=j}|1{τ>n}

)
≤ E1{τ>n}

= Pr(τ > n)
n→∞−→ 0

because Pr(τ < ∞) = 1. �

What goes wrong in the periodic case?

Example. Suppose we have S = {0, 1} and P =

(
0 1
1 0

)
. Then π = (1/2, 1/2).

If P (X0 = 0) = 1 and Y0 = 1 (this happens with probability 1/2), then they never
meet.
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Chapter 9

Time Averages

In class, we stated most of the formulae to look something like

1

N

N∑
n=0

f(Xn).

I know that this is equivalent to what I’m writing here, but it just seems like such a
silly way of thinking, so I changed it to 1

N+1
. Do statisticians really insist on dividing

by N when dealing with N + 1 terms?

Recall the following results:

1. The strong law of large numbers for independent identically distributed random
variables. If {Yn} is a sequence of independent identically distributed random
variables with E|Yi| < ∞ and EYi = µ, then

Pr

(
ω : lim

n→∞

1

n

n∑
i=1

Yi(ω) = µ

)
= 1,

or we write
1

n

n∑
i=1

Yi → µ

with probability 1 or almost surely (a.s.).

2. Let (Xn) be a Markov chain and f : S → R a bounded or positive function.

• We interpret f(i) as the reward or cost of having the process at state j.
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• We consider

lim
N→∞

1

N

N∑
n=0

f(Xn)

to be the average long-term reward (cost) rate.

• If f(k) = Ij(k) = δkj, then f(Xn) = 1{Xn=j} ≡ Ij(Xn). Then

1

N + 1

N∑
n=0

Ij(Xn) =
number of visits to j on steps 0, . . . , N

N + 1

is the relative frequency or proportion of time (X0, . . . , XN) spent in j.

Proposition 9.1 Let X be irreducible and positive recurrent, and let π be the unique
stationary distribution of X. Let f : S → R be bounded or positive. Then for all
initial distributions of X, we have

Pr

(
lim

N→∞

1

N + 1

N∑
n=0

f(Xn) = π(f) :=
∑
k∈S

πkf(k)

)
= 1.

The left side is
f(X0) + · · ·+ f(XN)

N + 1
,

the sample average.

Corollary 9.2 For bounded functions f , for all i ∈ S

1

N + 1

N∑
n=0

Ei(f(Xn)) → π(f).

Proof. By Proposition 9.1,

YN :=
1

N + 1

N∑
n=0

f(Xn) → π(f)
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with probability 1. We have

|YN | ≤ sup
x∈S

|f(x)| = µ < ∞.

By the bounded convergence theorem,

EiYN → Eπ(f) = π(f). �

Corollary 9.3

1

N

N∑
n=1

p
(n)
ij → πj

as N →∞.

Proof. Take f(k) = Ij(k). Then

EiIj(Xn) = Pi(Xn = j) = p
(n)
ij ,

and π(Ij) = πj. Then use Corollary 9.2. �

Example. Let f(k) = 1{i}(k). Then

π(f) =
∑

k

1{j}(k)πk = xj.

Then 1
N+1

∑N
n=0 1{j}(Xn) is the proportion of time that (X0, . . . , XN) spends at j.

Proof of Proposition 9.1 Suppose f ≥ 0.

• We consider excursions. The kth excursion is (Xτi(k−1)+1, . . . , Xτi(k)). The ex-
cursions are independent identically distributed random variables. Set

η0 :=

τi(1)∑
n=0

f(Xn),

ηk :=

τi(k+1)∑
n=τi(k)+1

f(Xn), k ≥ 1.
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Since these sums correspond to different excursions, η0, η1, η2, . . . are indepen-
dent and identically distributed.

• By the strong law of large numbers for independent identically distributed ran-
dom variables ηk,

1

m

m∑
k=1

ηk → Eiη1

almost surely. Note that

m∑
k=1

ηk =

τi(B(N))∑
n=τi(1)+1

f(Xn),

where B(N) = max{k ≥ 0 : τi(k) ≤ N} is the number of completed excursions.
Then

1

N + 1

τi(B(N))∑
n=0

f(Xn) ≤ 1

N + 1

N∑
n=0

f(Xn) ≤ 1

N + 1

τi(B(N)+1)∑
n=0

f(Xn). (∗)

The left side of (∗) is 1
N+1

η0 + 1
N+1

∑B(N−1)
k=1 ηk. The right side of (∗) is 1

N+1
η0 +

1
N+1

∑B(N)
k=1 ηk. We have

η0

N + 1

N→∞−→ 0 almost surely. (†)

We show that
B(N)

N + 1

N→∞−→ 1

mj

= πj. (∗∗)

To prove (∗∗), let α0, α1 = τi(1), and αn = τi(n) − τi(n − 1). These are inde-
pendent identically distributed random variables representing random variables
with mean mi. Thus

τi(k)

k

k→∞−→ mi almost surely (N)

and
τi(B(N)) ≤ N < τi(B(N) + 1). (NN)

We have

τi(B(N))

B(N)
≤ N

B(N)
<

τi(B(N) + 1)

B(N)
≡ τi(B(N) + 1)

B(N) + 1
· B(N) + 1

B(N)
.
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By (N), the left side goes to mi, and the right side also goes to mi. Thus

B(N)

N
→ 1

mi

as N →∞ almost surely. We therefore have

1

N

B(N)∑
k=1

ηk =
B(N)

N
· 1

B(N)

B(N)∑
k=1

ηk
N→∞−→ 1

mi

Eiη1 almost surely. (∗ ∗ ∗)

The left and right sides of (∗) tend to 1
mi

Eiη1, and so also

1

N + 1
f(Xn)

N→∞−→ 1

mi

Eiη1

almost surely. We now show∑
j

f(j)πj =
1

mi

Eiη1. (∗ ∗ ∗ ∗)

We have ∑
j

f(j)πj =
∑

j

f(j)
γ

(i)
j

mi

,

where by construction

γ
(i)
j = Ei

(
∞∑

m=1

1{Xn=j}∩{τi(1)≥n}

)
is the average number of visits to j in one excursion determined by i. We
therefore have ∑

j

f(j)πj = Ei

∑
j∈S

τi(1)∑
n=1

f(j)1{Xn=j}

 1

mi

= Ei

τi(1)∑
n=1

(∑
j∈S

f(j)1{Xn=j}

)
1

mi

= Ei

τi(1)∑
n=1

f(Xn)

 1

mi

= (Eiη1)
1

mi

,

as desired. �
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Chapter 10

Time Reversal

Let (Xn) be an irreducible positive recurrent Markov chain with matrix P and sta-
tionary distribution π. Take X0 ∼ π so that the system is in steady state. We consider
the reversed chain {Yn := X−n, n = 0,±1,±2, . . .}. The transition probabilities for
Yn are

qij = Pr(Yn+1 = X−n−1 = j | Yn = X−n = i)

= Pr(Xm = j | Xm+1 = j)

=
Pr(Xm+1 = i | Xm = j) Pr(Xm = j)

Pr(Xm+1 = i)

= pji
πj

πi

.

Definition. Xn is reversible if qij = pij.

Theorem 10.1 X is time reversible iff πipij = πjpji for all i, j ∈ S. These are called
the balance equations.

Theorem 10.2 For an irreducible Markov chain, if there exists π such that 0 ≤
πi ≤ 1,

∑
i πi = 1, πipij = πjpji for all i, j ∈ S, then the chain is time reversible (in

equilibrium) and positive recurrent with stationary distribution π.
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Proof. We have πipij = πjpji, so
∑

i πipij =
∑

i πjpji = πj. We showed π satisfies
π = πP iff X is positive recurrent. �

At this point, we turned to Markov chain Monte Carlo methods, but these don’t seem
to fit at this point; therefore I am relegating them to Appendix A.
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Chapter 11

Continuous Time Markov Chains

Definition. Let {Xt, t ≥ 0} be a family of random variables taking values in some
countable state space S. Then {Xt} is a Markov chain if it satisfies the Markov
property: For all n ≥ 1, for all t1 < t2 < · · · < tn, for all j, i1, . . . , in−1 ∈ S,

Pr(Xtn = j | Xt1 = i1, . . . , Xtn−1 = in−1) = Pr(Xtn = j | Xtn−1 = in−1).

Transition probabilities are Pij(s, t) := Pr(Xt = j | Xs = i), s < t, for all i, j.

We make the assumption of time-homogeneity here: Pij(s, t) = Pij(s − t, 0) =:
Pij(s− t).

We set Pt := (Pij(t))i,j∈S, a |S| × |S| matrix, for all t ≥ 0.

Theorem 11.1 The family {Pt, t ≥ 0} is a stochastic semigroup, i.e.

1. P0 = I, the identity matrix (i.e. Pij(0) = δij).

2. For each t ≥ 0, Pt is stochastic (i.e. Pij(t) ≥ 0; the rows sum to 1).

3. Pt+s = PtPs for all s, t ≥ 0 (Chapman-Kolmogorov).

Proof.

2. ∑
j∈S

Pij(t) =
∑
j∈S

Pr(Xt = j | X0 = i) = Pr(Xt ∈ S | X0 = i).
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3.

Pij(t + s) = Pr(Xt+s = j | X0 = i)

=
∑
k∈S

Pr(Xt+s = j | X0 = i, Xs = k)

=
∑
k∈S

Pkj(t)Pij(s),

as desired. �

Definition. The semigroup (Pt)t≥0 is called standard if Pt
t↘0−→ I ≡ P0. This assures

continuity by Chapman-Kolmogorov.

We consider only standard Pt.
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Chapter 12

Construction of Continuous Time
Markov Chains

12.1 Ingredients

1. Take (Xn), a discrete time Markov chain with parameters ({ak}, Q), state space
S, and Q = (Qij). Assume Qii = 0 for all i ∈ S.

2. {En, n ≥ 0} independent identically distributed random variables distributed
by exp(i), independent of (Xn).

3. {λk, k ∈ S}, which is a function on S, with λ(k) > 0 for all k ∈ S.

It follows that continuous time Markov chains are “usually constant” except for dis-
crete jumps. We call Tn jump times; these are times when transitions i → j occur.
T1 − T0 ∼ exp(λi) = exp(λ(X0)), T2 − T1 ∼ exp(λj) = exp(λ(X1)), and so forth.

12.2 Construction

• T0 = 0. W (0) = E0/λ(X0). Then

Pr(W (0) > x | X0 = i) = Pr(E0 > xλ(i) | X0 = i) = e−λ(i)x

so that W (0) ∼ exp(λ(X0)) |X0=i.
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• T1 = T0 + W (0); X(t) = X0 for T0 ≤ t < T1.

• Let W (T1) := E1(λ(X1)) ∼ exp(λ(X1)). Then T2 = T1 + W (T1), and Xt = X1

for T1 ≤ t < T2.

Now suppose that {W (Tm), m ≤ n − 1} and {Tm, m ≤ n} and {X(t), 0 ≤ t ≤ Tn}
are already defined. Set T∞ := limn→∞ Tn. On [0, T∞), Xt :=

∑∞
n=0 Xn1[Tn,Tn+1)(t),

t < T∞.

12.3 Properties

Lemma 12.1 {Tm − Tm−1 ≡ W (Tm−1), m ≥ 1} are independent and exponential,
given (Xn), i.e.

Pr(Tm − Tm−1 > um, 1 ≤ m ≤ n | X0 = i0, . . . , Xn−1 = in−1) =
n∏

m=1

e−λ(im−1)um .

Lemma 12.2

Pr(Xn+1 = j, Tn+1 − Tn > u | X0, . . . , Xn, T1, . . . , Tn) = Pr(Xn+1 = j, Tn+1 − Tn > u | Xn)

= QXn,je
−λ(Xn)u.

Proof.

Pr(Xn+1 = j, Tn+1 − Tn > u | X0 = i0, . . . , Xn = in, T1, . . . , Tn)

= Pr(Xn+1 = j, En > uλ(in) | X0 = i0, . . . , Xn = in,

Tm − Tm−1 = W (Tm−1) =
Em−1

λ(im−1)
, m = 1, . . . , n, E1, . . . , Ei−1)

= Pr(Xn+1 = j, En > uλ(in) | Xn = in)

= Qije
−uλ(in),
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as desired. �

12.4 Summary

A Markov chain (Xt, t ≥ 0) is determined by

1. a jump chain (Xn), which is a Markov chain with matrix Q, where Qii = 0.

2. a function {λ(k), k ∈ S}, the rates of holding times Tm = Tm−1 = W (Tm).
Then

• {T0, T1, . . .} are the jump times, with Tm − Tm−1 ∼ exp(λ(Xm−1)).

• Xn = X(T+
n ) is the embedded discrete time Markov chain with proba-

bilities Qij; this governs the jumps.
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Chapter 13

Birth-Death Processes

13.1 Description

Let Xt = i (i.e. at time t, there are i individuals alive). Let B(i) ∼ exp(λi) be
the time until the next birth and D(i) ∼ exp(µi) be the time until the next death
(µ0 = 0). Assume that only one events happens at a time. Then the population
increases by 1, i.e. Xt makes the transition i → i + 1 if B(t) < D(t), with probability
Pr(B(i) < D(i)) = λi

λi+µi
. Xt makes the transition i → i−1 if D(i) < B(i) with prob-

ability Pr(D(i) < B(i)) = µi

λi+µi
. The holding time is min(B(i), D(i)) ∼ exp(λi + µi).

Let {Xt, t ≥ 0} be a Markov chain.

• Jumps. We have an embedded discrete time chain (Xn), where n corresponds
to the “nth jump.” We have Q = (Qij), where Qij is the probability of jumping
from i to j at the time of a jump; Qii = 0.

• Rates {λ(k)} describe how long, on average, the chain stays at k. We have
jump times T0 = 0, T1, T2, . . .. Then Tm − Tm−1 = Em

λ(Xm−1)
∼ exp(λ(Xn)). Xt is

defined on [0, T∞), where T∞ = limn→∞ Tn.

We call λi the birth rate and µi the death rate. Note that if pi = λi

λi+µi
and qi = µi

λi+µi
,

then λi = piλ(i) and µi = qiλ(i).
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13.2 Special Cases

13.2.1 Linear Birth

Suppose λi = iλ and µi = iµ for i ≥ 0. We calculate λ(i) = λi + µi = i(λ + µ). Then
pi = λi

λ(i)
= λ

λ+µ
and qi = µ

λ+µ
are constants.

Let Xt = i, i.e. i individuals are alive. Each individual, independently, lives a lifetime
Lk ∼ exp(λ + µ) for k = 1, 2, . . . , i. At its deathbed, the individual

• dies childless with probability µ
λ+µ

= q, or

• has two children with probability λ
λ+µ

= p.

From this description, we find that the holding time is min(L1, . . . , Li) ∼ exp(i(λ+µ)).
Then λi = piλ(i) = λ

λ+µ
i(λ + µ) = iλ. Similarly, µi = iµ.

13.2.2 The Pure-Birth Process

Let µi = 0 so that Qi,i+1 = 1 − pi for all i. Then (Xn) determines when the chain
increases by 1. Then λ(i) = λi > 0. An example is the Yule process, or linear pure
birth process, in which λi = iλ, where λ > 0.

Let Xt = i so that i individuals are alive. Each independently lives Lk ∼ exp(λ),
for k = 1, 2, . . . , i. At the end of his or her life, the individual is replaced by
2 (or, equivalently, gives birth to 1 and continues living). The holding time is
B(i) = min(L1, . . . , Li) ∼ exp(iλ).

13.2.3 The Poisson Process

This is a pure birth process, with λ(i) = λi = λ. Let N0 = 0 and T0, T1, T2, . . . be
arrival times, with Tn − Tn−1 ∼ exp(λ). Then Nt is the number of arrivals or occur-
rences by time t. This is often called the counting process or import process.

Later we shall show
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• Nt ∼ Pi(λt), t ≥ 0. λ is the intensity or rate.

• The increments Nt−Ns and Ns−N0 are independent and stationary (0 < s < t).

13.2.4 Thinned Poisson Process

Customers arrive according to a Poisson process given by Nt and intensity λ. Each
customer stays with probability p or gives up (balks). The resulting process N ′

t is
Poisson with intensity λ′ = λp. (The birth rate for N ′ = λ′i = p′λ(i) = pλ.)
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Chapter 14

Stability and Explosions

Questions.

• When is T∞ = ∞, i.e., when is (Xt) defined for all t ≥ 0?

• What is the importance of the condition 0 < λ(k) < ∞?

Definition. A state i for which 0 < λ(i) < ∞ is called stable. A state i for which
λ(i) = ∞ is called instantaneous.

Note.

• If λ(i) = ∞, then the mean holding time at state i is 1
λ(i)

= 0.

• λ(i) = 0 means that the mean holding time at state i is 1
0

= ∞ so that i is
absorbing.

In this class we make the assumption that all states are stable.

Definition. If for all i ∈ S, Pi(T∞ = ∞) = 1, then (Xt) is regular.

Note. If T∞ < ∞, then on a finite interval [0, T∞], (Xt) has infinitely many jumps
at time T1, T2, . . .. We say that an explosion occurs.
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Proposition 14.1 For all i ∈ S,

Pi(T∞ < ∞) = Pi

(∑
n

1

λ(Xn)
< ∞

)
.

Thus (Xt) is regular iff Pi

(∑
n

1
λ(Xn)

= ∞
)

= 1 for all i ∈ S.

For example, the Poisson process is regular because
∑

1
λ

= ∞. The Yule process is
regular because

∑
1
iλ

= ∞. The pure birth process is regular iff
∑

1
λi

= ∞. For

example, if λi = i2λ, then we have an explosion.

Proof. We have

T∞ = lim
N→∞

Tn

= lim
N→∞

N−1∑
n=0

(Tn+1 − Tn)

=
∞∑

n=0

(Tn+1 − Tn)

=
∞∑

n=0

En

λ(Xn)
.

Hence by the problems we have

Pi(T∞ < ∞ | (Xn)) = Pi

(
∞∑

n=0

1

λ(Xn)
< ∞ | (Xn)

)
,

as desired. �

Corollary 14.2 The following are sufficient conditions for regularity:

1. If maxi λ(i) < ∞, then (Xt) is regular. This is because
∑

1
λ(Xn)

≥
∑

1
maxi λ(i)

=
∞.
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2. If S is finite, then the chain is regular. This follows from (1) since maxi∈S λ(i) <
∞.

3. If X0 = i and i is recurrent for the jump chain (Xn), then (Xt) is regular. This
is because if i is recurrent, then Xn = i infinitely often, e.g. on steps N1, N2, . . .
Then

∑
1

λ(Xn)
≥
∑

j
1

λ(Xnj )
= ∞.
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Chapter 15

The Backward and Forward
Equations and the Generator
Matrix

We make the following assumptions:

• (Xt) is regular (i.e. T∞ = ∞).

• All states are stable (0 < λ(k) < ∞ for all k).

The goal is to find a relationship between (Q, λ) and (Pij(t))i,j∈S.

Proposition 15.1 For all t > 0 and for all i, j ∈ S, we have

Pij(t) = δije
−λi(t) +

∫ t

0

λ(i)e−λ(i)s
∑
k 6=i

QikPkj(t− s) ds.

Proof. The technique is to decompose according to the value of the firm jump T1

(conditioning on T1). We have

Pij(t) = Pi(Xt = j)

= Pi(Xt = j, t < T1) + Pi(Xt = j, t ≥ T1).
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We have Pi(T1 > t) = e−λ(i)t. The first term is δije
−λi(t). The second term is∑

k 6=i

Pi(T1 ≤ t,XT1 = k,Xt = j) =
∑
k 6=i

∫ t

0

λ(i)e−λ(i)sQikPkj(t− s) ds,

and the result follows. �

Corollary 15.2 Pt ↘ I as t ↘ 0 (which means that Pi is standard).

Corollary 15.3 For all i, j ∈ S, Pij(t) is differentiable with continuous derivative.
At t = 0,

d

dt
Pij(0) ≡ Aij =

{
−λ(i) i = j,

λ(i)Qij i 6= j.

We call the |S| × |S| matrix P ′(0) = A = (Aij) the generator matrix. We then have
the backward difference equation P ′(t) = AP (t), i.e.

P ′
ij(t) =

∑
k

AikPkj(t).

Proof. Differentiate the result of Proposition 15.1, or see page 387 of Resnick. �

We can interpret the generator matrix as flow rates of probability.

1.

Aii = −λ(i) = P ′
ii(0) = lim

h↘0

Pii(h)− Pii(0)

h
− lim

h↘0

Pii(h)− 1

h
,

or
Pii(h) = 1− λ(i)h + o(h) = 1 + Aiih + o(h).

2. If i 6= j, then

Aij = λ(i)Qij = lim
h↘0

Pij(h)− Pij(0)

h
= lim

h↘0

Pij(h)

h
,

or
Pij(h) = λ(i)Qijh + o(h) = Aijh + o(h).
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3. The probability of two of more transitions in the interval of length h is o(h):

Pr(T2 < h | X0 = i, XT1 = j) = Pr

(
E1

λ(i)
+

E2

λ(j)
< h

)
≤ Pr

(
E1

λ(i)
< h and

E2

λ(j)
< h

)
= (1− e−λ(i)h)(1− e−λ(j)h)

= (λ(i)h + o(h))(λ(j)h + o(h))

= o(h).

15.1 Dynamics of the Chain

Fix Xt = i; consider a small time interval (t, t + h). By (3), the probability of more
than one transition in this interval is o(h). Thus in (t, t + h), the probability that
nothing happens (the chain remains in state i) is

Pii(h) + o(h) = 1− λ(i)h + o(h) = 1 + Aii(h) + o(h)

(the diagonal of the generator) by (1). In this case, the holding time E1

λ(i)
> h with

probability e−λ(i)h = 1−λ(i)h+o(h). So −Aiih = λ(i)h ≈ 1−Pii(h) is the probability
that the chain leaves state i, so −Aii = λ(i) is the flow rate for the probability to
leave state i. The probability for the chain to move i → j in (t, t + h) is

Pij(t) + o(h) = λ(i)Qijh + o(h) = Aijh + o(h)

by (2). Note that the move i → j happens in (t, t + h) if

• the holding time E1

λ(i)
< h with probability 1− e−λ(i)h = λ(i)h + o(h),

• the chain jumps i → j with probability Qij.

Suppose X ∼ exp(λ). Then E(X) = 1
λ
. In this case fX(x) = λe−λx (for x > 0) is the

probability density function. We have P (X ≤ x) = 1−e−λx and P (X > x) = e−λx for
x > 0. The Markov chain jumps from i to j with probability Pij(h)+o(h) (where the
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o(h) accounts for the possibility of i → j → k → j) and remains in i with probability
Pii(h) + o(h).

We have the relationship Pij(h) = λ(i)Qij(h) + o(h) and Pii(h) = 1− λ(i)h + o(h).

Example. (Thinned Poisson.) Customers arrive according to a Poisson process with
intensity λ (Nt). Each customer stays with probability p or balks. The resulting
process is N ′

t . Show that N ′
t ∼ P and λ′ = λp.

Solution. Suppose N ′
t = i. Consider the interval (t, t + h). Then

Pi,i+1(h) = Pr(N ′
t+h = i + 1 | N ′

t = i)

= Pr(one new arrival according to input process Nt and stay)

= Pr(interarrival time for Nt < h) · p + o(h)

= (1− e−λh)p + o(h)

= λhp + o(h).

Then Pii(h) = Pr(no arrivals in Nt or arrival in Nt leaves). Also, Pii(h) = 1 −
Pi,i+1(h)+o(h) = 1−λph+o(h). Then λ(i)Qi,i+1 = λp and λ(i) = λp, so Qij = δi+1,j.
These are parameters of a Poisson process with intensity λ′ = λp.

There is a second method based on waiting time Wi = min(L1, . . . , Li, E) ∼ exp(iq +
λ).

Let A = (Aij).

Note.
∑

j Aij = 0. (The rows of the generator matrix sum to zero.)

Proof.
∑

j 6=i Qij = 1 iff
∑

j 6=i
Aij

λ(i)
= 1 iff

∑
j 6=i Aij = λ(i) = −Aii. �

We now work out the generator for the birth-death process: Aii = −λ(i) = −(λi+µi),
and Aij = λ(i)Qij, which is λi for j = i + 1 and µi for j = i− 1 and 0 otherwise.
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We now have the forward equation: P ′(t) = P (t)A.

Proof. We use Chapman-Kolmogorov: P (t + s) = P (t)P (s). Since P ′(t + s) =
P (t)P ′(s), we have P ′(t) = P (t)A. �

Remark. P (t) = etA =
∑∞

n=0
tn

n!
An.

The forward equation means that P ′
ij(t) =

∑
k Pik(t)Akj =

∑
k 6=j Pik(t)λ(k)Qkj −

λ(j)Pij(t).

Example. The generator matrix for the birth-death process is

A =

−λ0 λ0 0 · · ·
µ1 −(λ1 + µ1) λ1 · · ·
...

...
...

. . .

 .

Example. Consider a Poisson process with µi = 0 for all i, λi = λ, and N0 = 0.
The goal is to use the forward equations to find P0j(t) = Pr(Nt = j | N0 = 0).
We have P ′

00(t) = −λP00, and P ′
0j(t) = λP0,j−1 − λP0j(t) and P0j(t) = δ0j for j ≥ 1.

(These are called the differential difference equations.) We use the generating function
P (t, s) =

∑∞
j=0 sjP0j(t) = E(sNt | N0 = 0). Multiply the jth equation by sj and sum:

∂P (t, s)

∂t
= λsP − λP = λ(s− 1)P

P (s, 0) = s0 = 1.

Thus P (s, t) = eλ(s−1)t. This is the generating function of a Poisson (λt) random

variable. Thus Nt is Poisson (λt) and P0j(t) = (λt)j

j!
e−λt.
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Chapter 16

Stationary and Limiting
Distributions

16.1 Classification of States

For all i, j ∈ S, either Pij(t) > 0 for all t > 0 or Pij(t) = 0 for all t > 0.

Definition. The chain is irreducible if for all i, j ∈ S, Pij(t) > 0 for some t (and thus
for all t > 0). An irreducible continuous time Markov chain is transient or recurrent
iff the the embedded discrete time Markov chain is transient or recurrent.

16.2 Stationary Distributions

Definition.

• A measure η = {ηj : j ∈ S} on S is invariant if for all t > 0, ηP (t) = η.

• If η is an invariant probability measure, then it is called a stationary distri-
bution π.

If an initial distribution of the chain is π, then Xt is strictly stationary.

Theorem 16.1 (Ergodic Theorem) Let (Xt) be irreducible.
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1. If there exists a stationary distribution π, then it is unique, and Pij(t) → πj as
t →∞ for all i, j.

2. If a stationary distribution does not exist, then Pij(t) → 0 as t →∞ for all i, j.

Sketch of Proof. Fix step h > 0, and let Yn := X(nh) be an irreducible discrete
time aperiodic Markov chain (since Pij(t) > 0 for all t). This is a skeleton of X.

• From Theorem 8.2, we know that if (Yn) is null recurrent or transient, then
Pij(nh) → 0 as n →∞; if (Yn) is positive recurrent, then there exists a unique
stationary distribution (πh), and Pij(nh) → πh

j as n →∞ for all i.

• Notice that for all rational h1 and h2, πh1 = πh2 because {nh1, n ≥ 0} and
{nh2, n ≥ 0} have infinitely many common points. Thus the limit of {Pij(t)}
exists along all sequences {nh, n ≥ 0}.

• (See Resnick.) Use continuity of Pij(t) to fill the gaps. �

Claim 16.2 π = πPt iff πA = 0. (These are called the balance equations.) That is,∑
i πiAij =

∑
i6=j πiAij + πjAjj = 0.

Sketch of Proof. πA = 0 iff πAn = 0 for all n ≥ 1 iff
∑∞

n=1
tn

n!
πAn = 0 for all t > 0

iff π
∑∞

n=0
tn

n!
An = π for all t > 0 iff πetA = π iff πPt = π. �

Example. Birth-death process. The balance equations are πA = 0 or πjAjj +∑
i6=j πiAij = 0. When j = 0, we have π0(−λ0) + π1µ1 = 0, so π1 = π0

λ0

µ0
. When

j = 1, we have π1(−(λ1 + µ1)) + π0λ0 + π2µ2 = 0, so π2 = π0
λ0λ1

µ1µ2
, and so forth. Since

π is a stationary distribution iff
∑∞

n=0 πn = 1 and πn = λ0···λn−1

µ1···µn
π0, the chain has a

stationary distribution if
∑∞

n=1
λ0···λn−1

µ1···µn
< ∞.
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Chapter 17

Problems

1. Let X have the Poisson distribution with parameter Y , where Y has the Poisson
distribution with parameter µ. Show that PX+Y (x) = exp{µ(xex−1 − 1)}.

2. A hen lays N eggs where N is Poisson with parameter λ. The weight of the nth

egg is Wn, where W1, W2, . . . are independent identically distributed random
variables with probability generating function P (s), independent of N . Show
that the generating function PW of the total weight W =

∑N
i=1 Wi is given by

PW (s) = exp{−λ+λP (s)}. W is said to have a compound Poisson distribution.

3. Let {Xn, n ≥ 1} be independent identically distributed nonnegative integer
valued random variables independent of the nonnegative integer valued random
variable N and suppose that X’s and N have finite second moments. Let
Sn =

∑n
k=0 Xi. Use generating functions to check Var(SN) = E(N) Var(X1) +

(EX1)
2 Var(N).

4. Let X have probability mass function {pk} satisfying
∑∞

k=0 pk = 1. Let P (s) be
the generating function of X and define Q(s) to be the generating function of
the sequence {qk} = {P (X > k), k = 0, 1, 2, . . .} (i.e. Q(s) =

∑∞
k=0 skqk). Show

that Q(s) = (1 − P (s))/(1 − s) for 0 ≤ s < 1. Use this formula to show that
EX ≡

∑∞
k=0 P (X > k) = P ′(1).

5. Consider a branching process (Galton-Watson). Suppose that each family size
has geometric distribution, i.e. pk = qpk, k ≥ 0, where p + q = 1, p, q > 0.

(a) Show (by induction) that

i. if q 6= p, then Pn(s) = q pn−qn−(pn−1−qn−1)ps
pn+1−qn+1−(pn−qn)ps

;

ii. if q = p, then Pn(s) = n−(n−1)s
n+1−ns

.
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(b) Use (a) to show that P (Zn = 0) → 1 if p ≤ q, P (Zn = 0) → q/p, if
p > q.

6. Consider a branching process (Galton-Watson). Suppose that each family size
has mean m = EZn,j = EZ1 and variance σ2 = Var Zn,j = Var Z1. Show that

(a) Var Zn = P ′′
n (1) + mn −m2n;

(b) P ′′
n (1) = (σ2 + m2 −m)mn−1 + m2P ′′

n−1(1);

(c)

Var Zn =

{
nσ2, if m = 1;

σ2(mn − 1)mn−1(m− 1)−1 if m 6= 1.

7. Suppose that every man in a certain society has exactly three children, which
independently have probability one-half of being a boy and one-half of being
a girl. Suppose also that the number of males in the nth generation forms a
branching process.

(a) Find the probability that the male line of a given man eventually becomes
extinct.

(b) If a given man has two boys and one girl, what is the probability that his
male line will continue forever?

8. Let Y ≥ 0 and let φ ≥ 0 be a function that is increasing on [0,∞). Show that

(a) φ(a)P (Y ≥ a) ≤ Eφ(Y );

(b) P (|X| ≥ ε) ≤ EX2/ε2.

9. Show that any sequence of independent random variables taking values in a
countable set S is a Markov chain. Under what conditions is this chain homo-
geneous?

10. Let X and Y be two independent homogeneous Markov chains, each with the
same discrete state space S. Show that the sequence Zn = (Xn, Yn) is a Markov
chain with state space S × S and give the transition probability matrix.

11. Let X be a Markov chain with state space S and suppose that h : S → T is
one-one.

(a) Show that Yn = h(Xn) is a Markov chain on T .
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(b) Give an example of a function f such that Zn = f(Xn) is not a Markov
chain.

12. Show that

(a)

Pr(Xn+1 = in+1, . . . , Xn+m = in+m | X0 = i0, . . . , Xn = in)

= pin,in+1 · · · pin+m−1,in+m .

(b)

Pr(Xn+m = in+m | X0 = i0, . . . , Xn = in)

= p
(m)
in,in+m

≡ Pr(Xn+m = in+m | Xn = in).

13. Let {Zn}n be independent identically distributed random variables and X0 =
f(Z0), Xn+1 = g(Xn, Zn+1) for some functions f and g. Then Xn is a Markov
chain (this is a way to generate Markov chains!).

14. Assume that once a day (e.g. at noon), the weather is observed as being one
of the following: state 1: rain (or snow); state 2: cloudy; state 3: sunny. We
postulate that the weather on day t is characterized by a single one of the three
states above, and that all of the transition probabilities pij, i, j = 1, 2, 3 are
positive (and known).

(a) Given that the weather today is sunny, what is the probability that the
weather for the next 7 days will be “sun-sun-rain-rain-sun-cloudy-sun”?

(b) Given that the weather today is sunny, what is the probability that it stays
sunny for exactly d days?

15. (a) Let {Xn, n ≥ 0} be a two-state Markov chain having state space S = {0, 1}
with transition matrix

P =

(
1− α α

β 1− β

)
.

Show that

p
(n)
0,0 =

{
β

α+β
+ α

α+β
(1− α− β)n, for α + β > 0,

1, for α + β = 0.
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(b) Suppose a virus can exist in N different strains and in each generating
either stays the same, or with probability α mutates to another strain,
which is chosen at random. What is the probability that the strain in the
nth generation is the same as that in the 0th?

16. Give an example to show that for a Markov chain to be irreducible, it is sufficient
but not necessary that for some n ≥ 1, p

(n)
ij > 0 for all i, j ∈ S.

17. Let {Xn, n ≥ 0} be a Markov chain having state space S = {0, 1}. Let
P (Xn+1 = 1 | Xn = 0) = p, P (Xn+1 = 0 | Xn = 1) = q, P (X0 = 0) = µ0. Here
0 < p, q, µ0 < 1. Find P (X1 = 0 | X0 = 0, X2 = 0) and P (X1 6= X2).

18. Suppose {Zn, n ≥ 1} are independent and identically distributed representing
outcomes of successive throws of a die. Define Xn = max{Z1, . . . , Zn}. Show
that {Xn, n ≥ 1} is a Markov chain and give its transition matrix P . Determine
which states are transient and which are recurrent.

19. Classify the states of the discrete Markov chain with state space S = {1, 2, 3, 4}
and transition matrix

P =


1/3 2/3 0 0
1/2 1/2 0 0
1/4 0 1/4 1/2
0 0 0 1

 .

Calculate f
(n)
34 and deduce that the probability of ultimate absorption in state

4, starting from 3, equals 2/3.

20. Harry’s restaurant business fluctuates in successive years between three states: 0
(bankruptcy), 1 (verge of bankruptcy), and 2 (solvency). The transition matrix
giving the probabilities of evolving from state to state is

P =

1 0 0
.5 .25 .25
.5 .25 .25

 .

What is the expected number of years until Harry’s restaurant goes bankrupt
assuming that he starts from the state of solvency?

21. The Media Police have identified six states associated with television watching:
0 (never watch TV), 1 (watch only PBS), 2 (watch TV fairly frequently), 3
(addict), 4 (undergoing behavior modification), 5 (brain dead). Transitions from
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state to state can be modelled as a Markov chain with the following transition
matrix:

P =


1 0 0 0 0 0
.5 0 .5 0 0 0
.1 0 .5 0 0 .4
0 0 0 .7 .1 .2

1/3 0 0 1/3 1/3 0
0 0 0 0 0 1

 .

(a) Which states are transient and which are recurrent?

(b) Starting from state 1, what is the probability that state 5 is entered before
state 0; i.e. what is the probability that a PBS viewer will wind up brain
dead?

22. Consider a Markov chain on S = {0, 1, 2} with transition matrix

P =

0 .5 .5
1 0 0
1 0 0

 .

(a) Find n-step probabilities p
(n)
ij , n = 1, 2, . . .

(b) Show that all states are recurrent.

(c) Find all probabilities f
(n)
ii , n ≥ 1, i = 0, 1, 2.

(d) Find the mean recurrence times mi, i = 0, 1, 2.

(e) Does the chain have ergodic (i.e. positive recurrent and aperiodic) states?

23. Let {Xn, n ≥ 0} be a two-state Markov chain having state space S = {0, 1}
with transition matrix

P =

(
1− α α

β 1− β

)
.

Let X0 = 0 and T = τ0(1) the first time that the chain returns to state 0. Deter-
mine the distribution of T and calculate E(T ) (average length of an excursion).

24. Consider a Markov chain having the transition matrix

P =


1 0 0 0 0 0

1/4 1/2 1/4 0 0 0
0 1/5 2/5 1/5 0 1/5
0 0 0 1/6 1/3 1/2
0 0 0 1/2 0 1/2
0 0 0 1/4 0 3/4

 .
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Determine which states are transient and which are non-null (positive) or null
recurrent. Put the matrix P in canonical form.

25. Show that every recurrent class is closed.

26. In a finite Markov chain, j is transient iff there exists some state k such that
j → k, but j is not accessible from k. Explain why. Give an example to show
that this is false if the Markov chain has an infinite number of states.

27. Let {Zn,−∞ < n < ∞} be the sequence of independent identically distributed
random variables with P (Z1 = 0) = P (Z1 = 1) = 1/2. Define the stochastic
process {Xn} with state space {0, . . . , 6} by

Xn = Zn−1 + 2Zn + 3Zn+1, −∞ < n < ∞.

(a) Determine P (X0 = 1, X1 = 3, X2 = 2) and P (X1 = 3, X2 = 2).

(b) Is {Xn} Markov? Why or why not?

28. Let X1, X2, . . . be discrete independent identically distributed random variables
with mean µ < ∞ and finite variance. Let S0 = 0, Sn = X1 + · · · + Xn. Show
that if µ 6= 0, then the state {0} is transient for Sn.

29. Show that for an irreducible positive recurrent Markov chain with stationary
distribution π, the expected number of visits to state j between two successive
visits to state i is πj/πi.

30. (a) Let function f satisfy the set of linear difference equations

f(n) = qf(n−1)+pf(n+1), n = 1, 2, . . . , p+q = 1, p ∈ (0, 1), p 6= q.
(∗)

i. Seek a solution of (∗) in the form f(n) = αn. Show that such an f
solves (∗) for α = 1 and α = q/p.

ii. Show that f(n) = A ·1n +B · (q/p)n with A and B arbitrary constants
solve (∗) (i.e. this is the general solution of (∗)).

(b) Let Xn be an asymmetric random walk on Z. Find invariant measures.

31. Let {Xn} be an aperiodic positive recurrent irreducible Markov chain with sta-
tionary distribution π. Let {Yn} be an independent copy of X.

(a) Show that {ξn = (Xn, Yn), n ≥ 0} is Markov and find its transition proba-
bilities.
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(b) Give the stationary distribution of {ξn}.

32. Consider a Markov chain having transition matrix

P =


1 0 0 0 0 0

1/4 1/2 1/4 0 0 0
0 1/5 2/5 1/5 0 1/5
0 0 0 1/6 1/3 1/2
0 0 0 1/2 0 1/2
0 0 0 1/4 0 3/4

 .

Find the stationary distribution concentrated on each of the irreducible closed
sets.

33. A Markov chain has state space {0, 1, 2, . . .} and transition probabilities pi,i+1 =
λ/(i + ν + 1), pi,0 = 1 − pi,i+1, where λ > 0 and ν ≥ 0 are constants. State
any other necessary restrictions on the values of λ and ν. Show that the chain
is irreducible, aperiodic, and positive recurrent. Find explicit forms for the
stationary distribution in the cases ν = 0 and ν = 1.

34. Give an example of an irreducible Markov chain such that it has a stationary
distribution π, but n-step transition probabilities p

(n)
ij do not converge to πj.

35. Let {Xn} be an aperiodic positive recurrent irreducible Markov chain with sta-
tionary distribution π.

(a) Show that {ξn = (Xn, Xn+1), n ≥ 0} is Markov and find its transition
probabilities.

(b) Give the stationary distribution of {ξn}.
(c) Suppose each time there is a transition from state i to state j there is

a reward of g(i, j) which is received. Assume that g is bounded. What
is the long-term reward rate limn→∞

1
n

∑n
m=0 Eig(Xm, Xm+1)? Why does

this limit exist? Does it depend on the initial state i?

36. Suppose that the probability of a dry day (state 0) following a rainy day (state
1) is 1/3 and that the probability of a rainy day following a dry day is 1/2.

(a) Given that December 1st is a dry day, find the probability that December
3rd is a dry day.

(b) Find the long run proportion of rainy days.

(c) Find the expected number of days between two rainy days.
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37. Give an example of a Markov chain with

(a) at least two stationary distributions;

(b) a unique stationary distribution;

(c) no stationary distribution.

38. Four boys (denoted by 1, 2, 3, and 4) arranged in a circle play a game of throwing
a ball to one another. At each stage the child having the ball is likely to throw
it to a boy standing next to him clockwise with probability p, 0 < p < 1, and
to his neighbor counterclockwise with probability q = 1 − p. Suppose that X0

denotes the child who had the ball initially and Xn (n ≥ 1) denotes the boy
who had the ball after n throws.

(a) Write the state space and the transition probability matrix for the Markov
chain Xn.

(b) Find all the classes and determine which ones are recurrent and which ones
are transient.

(c) Does the chain have a stationary distribution? Find the expected number
of steps it takes the boy who originally had the ball to get the ball back.

39. A problem of interest to sociologists is to determine the proportion of society
that has an upper- or lower-class occupation. One possible mathematical model
would be to assume that the transitions between social classes of the successive
generations in a family can be regarded as transitions of a Markov chain. That
is, we assume that the occupation of a child depends only on his or her parent’s
occupation. Let us suppose that such a model is appropriate and that the
transition probability matrix is given by

P =

0.45 0.48 0.07
0.05 0.70 0.25
0.01 0.50 0.49

 .

That is, for instance, we suppose that the child of a middle-class worker will
attain an upper-, middle-, or lower-class occupation with respective probabilities
0.05, 0.70, 0.25.

(a) Is this chain

i. irreducible?

ii. non-null persistent?
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iii. reversible?

(b) In the long run, what percent of people in such a society have upper-,
middle-, or lower-class jobs?

(c) A worker has a middle-class occupation. On average, how many genera-
tions pass until his/her descendent will have a middle-class job as well?

40. Let Xn be a discrete-time Markov chain with state space S = {1, 2} and tran-
sition matrix

P =

(
1− α α

β 1− β

)
.

(a) Classify the states of the chain.

(b) Suppose that αβ > 0 and αβ 6= 1.

i. Find the n-step transition probabilities and show that they converge
to the unique stationary distribution as n →∞.

ii. For what values of α and β is the chain time-reversible in equilibrium?

41. Each of the processes described below is a birth and death process. Find the
birth and death rates, holding rates, and specify transition probabilities of the
embedded discrete time jump chain (i.e., write λi, µi, λ(i), Qi,j’s).

(a) M/M/1 Queue. Suppose customers arrive according to a Poisson process
with parameter λ > 0. They are served by a single server and leave.
Suppose the service times are exponentially distributed with parameter
µ > 0 and that whenever there is more than one customer waiting for
service the excess customers form a queue and wait until their turn. X(t)
denotes the number of customers in the system at time t.

(b) M/M/N Queue. Read part (a) first! Customers arrive according to a Pois-
son process with parameter λ > 0, but now they are served by N servers,
each of whom serves at rate µ. X(t) denotes the number of customers in
the system at time t.

(c) M/M/∞ Queue. Read part (a) first! Arrivals are Poisson with rate λ,
service times are exponential with parameter µ, and there are an infinite
number of servers. X(t) denotes the number of customers in the system
at time t.

(d) M/M/1 Queue with balking. Read part (a) first! Potential customers
arrive at a single-server station in accordance with a Poisson process with
rate λ. However, if the arrival finds n customers already in the station,
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then he will enter the system with probability αn. Assume an exponential
service rate µ. X(t) denotes the number of customers in the system at
time t.

(e) Branching process. Consider a collection of particles which act indepen-
dently in giving rise to succeeding generations of particles. Suppose that
each particle, from the time it appears, waits a random length of time
having an exponential distribution with parameter q and then splits into
two identical particles with probability p or vanishes with probability 1−p.
{X(t), 0 ≤ t < ∞} denotes the number of particles present at time t.

(f) Branching process with immigration. Consider the branching process in-
troduced in part (e). Suppose that new particles immigrate into the system
at random times that form a Poisson process with parameter λ and then
give rise to succeeding generations as described in part (e). X(t) denotes
the number of particles present at time t.

42. Superposition of independent Poisson processes is a Poisson process. Flies and
wasps land on your dinner plate in the manner of independent Poisson process
with respective intensities λ and µ. Show that the arrivals of flying objects form
a Poisson process with intensity λ + µ.

43. Thinning. Insects land in the soup in the manner of a Poisson process with
intensity λ. Each such insect is green with probability p, independently of the
colors of all other insects. Show that the arrivals of the green insects form a
Poisson process with intensity λp.

44. Let {Xt, t ≥ 0} be a Markov chain on {1, 2} with generator

A =

(
−µ µ
λ −λ

)
where λµ > 0.

(a) Describe the dynamics of the chain.

(b) Write down the forward equations and solve them for the transition prob-
abilities Pij(t), i, j = 1, 2.

(c) Calculate An and hence find

∞∑
n=0

tn

n!
An.

Compare your answer with that of part (b).
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(d) Find P (X(t) = 2 | X(0) = 1, X(3t) = 1).

(e) Solve the equation πA = 0 in order to find the stationary distribution.
Verify that Pij(t) → πj as t →∞.

45. Consider the following continuous-time branching process with binary splitting:
if a given particle is alive at a certain time, its additional life length is an
exponential random variable with parameter a. Upon death, the particle either
splits in two with probability p or vanishes with probability q. The particles
act independently of other particles and of the history of the process. Let X(t)
be the number of particles in the population at time t.

(a) Find the generator matrix and write out the forward equations.

(b) Find the stationary distribution of X(t).

46. M/M/∞ Queue. Arrivals are Poisson with rate a, service times are exponential
with parameter b, and there are an infinite number of servers. Let X(t) be the
number in the system at time t.

(a) Give the generator matrix.

(b) Show by solving balance equations that the stationary and limiting distri-
bution is Poisson.

47. Potential customers arrive at a single-server station in accordance with a Pois-
son process with rate λ. However, if the arrival finds n customers already in
the station, then he will enter the system with probability αn. Assuming an
exponential service rate µ, set this up as a birth and death process.

(a) Give the generator matrix A.

(b) Determine the stationary distributions when α0 = 1, αn = a (0 < a < 1),
n ≥ 1, ρ = λ/µ < 1.

(a) Give an example of a Markov chain on a finite state space S such that
three of the states each have a different period. (Total number of states is
|S| = N > 3.)

(b) Give an example of a Markov chain on a finite state space that has two or
more stationary distributions.

(c) Let (Xn) be a symmetric random walk on the nonnegative integers with
the following transition probabilities: pi,i+1 = 1/2 for i ≥ 0; pi,i−1 = 1/2
for i ≥ 1, and p0,0 = 1/2. Show that (Xn) is null recurrent.
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(d) Give an example of a Markov chain for which some states are positive
recurrent, some states are null recurrent, and some states are transient.

48. Consider two boxes A and B. Suppose there are d balls divided between the
boxes. Initially, some of the balls are in box A and some of the balls are in box
B. Suppose at each step, we choose one ball uniformly at random from among
the d balls and switch it to the opposite box. Let Xn be the number of balls in
box A at time n.

(a) Describe the state space and transition probabilities for Xn. Classify its
states.

(b) Determine the stationary distribution. Is the chain time-reversible? How
many balls should one expect to find in box A at equilibrium?

(c) Does the limit of the sequence {P0(Xn = 0)} exist when n → ∞? If the
limit exists, find the limit. If not, explain whether this contradicts the
ergodic theorem.

49. A mature individual produces offspring according to the probability generating
function f(s). Each immature individual grows to maturity with probability p
and then reproduces independently of the other individuals.

(a) Suppose that we have a population of k immature individuals. Find the
probability generating function of the number of (immature) individuals
at the next generation.

(b) Suppose that there are k mature individuals in the parent population. Find
the probability generating function of the number of mature individuals at
the next generation.

50. Consider a continuous time random walk on the half line. After a mean 1
exponential time, the walker jumps one unit to the left with probability q or one
unit to the right with probability p. Describe this process in terms of parameters
(λ, Q), where λ(i)’s are the holding rates of a continuous time Markov chain and
Qi,j’s are the transition probabilities of the embedded jump processes. Does this
process have a stationary distribution? If yes, find it. If necessary, introduce
conditions on p and q.

51. Assume that each member in a population has a probability βh+o(h) of giving
birth to a new member in an interval of time h (β > 0). Assume that the
population is started with one individual and let Xt be the number of births in
this population by time t.
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(a) Write forward equations for P1,n(t) = P (Xt = n | X0 = 1) and show that
Xt, the number of births in the population, has a geometric distribution
with mean eβt.

(b) Does the process Xt have any stationary distributions?
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Appendix A

Markov Chain Monte Carlo
Methods

Consider the crude Monte Carlo method: I =
∫ 1

0
f(x) dx = Ef(U), where U =

U(0, 1) is a random variable with uniform distribution. By the strong law of large
numbers, we can simulate by letting U1, . . . , UN be independent and identically ran-
dom variables with uniform distribution on (0, 1). Then

I =

∫ 1

0

f(x) dx ≡ Ef(U) ≈ 1

N

N∑
i=1

f(Ui).

We can take a sample U1, . . . , UN of independent identically distributed random vari-
ables. Then

f(U1) + · · ·+ f(UN)

N
→ Ef(U) = µ

almost surely.
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Chebyshev’s Inequality (See problems.) ESN = I ≡ Ef(U). Then

Pr(|SN − I| > ε) ≤ Var SN

ε

=
Var f(U)

Nε2
;

Var SN =
1

N2
N Var f(U)

=
Var f(U)

N
.

A.1 Importance Sampling

We have

I =

∫
X

f(x) dx

=

∫
X

f(x)

p(x)
p(x) dx

≡ E

[
f(x)

p(x)

]
≈ 1

N

N∑
i=1

f(Xi)

p(Xi)
,

where p(x) is a density function, p(x) > 0, and X1, . . . , XN are independent identi-
cally distributed random variables with probability density function p(x).

Summary. Rewrite I =
∫

f(x)π(x) dx = Ef(x), where X ∼ π(x) for some f and
some distribution π. Approximate

I = Ef(X) ≈ 1

N

N∑
i=1

f(Xi).

Then Xi’s are sampled from a distribution π independently.
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If X1, . . . , XN come from a Markov chain with stationary distribution π, then the
strong law of large numbers holds, and

1

N

∑
i=m

m + Nf(Xi) → π(f) = Ef(X), X ∼ π.

Observation. Let X1, . . . , Xn have probability density functio p(x). Define a vector
(X, Y ) such that {

X | Y ∼ p(x|y)

Y | X ∼ p(y | x).

Then

p(x) =

∫
p(x | y)p(y) dy

=

∫
p(x | y)

[∫
p(y | x′)p(x′) dx′

]
dy

=

∫
h(x, x′)p(x′) dx′,

where

h(x, x′) =

∫
p(x | y)p(y | x′) dy.

Summary. We have

p(x) =

∫
h(x, x′)p(x′) dx′.

Hence p(x) is a solution of this integral equation. Under some conditions, the solution
exists and is unique.

Conclusion. Conditional densities p(x | y) and p(y | x) uniquely determine p(x).

Markov chain Monte Carlo methods are techniques for generating random variables
from a density without having the density explicitly, but given a variety of facts about
it.
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A.2 Motivation

We discuss Bayesian interference. Let us say we would like to estimate a proportion
θ. Take an independent identically distributed sample X1, . . . , Xn, where

Xi =

{
1 if “no” on Proposition 80,

0 otherwise.

I think this lecture was on the same day as the California election. Then Xi ∼
Bin(1, θ) with observations x1, . . . , xn.

Let p(θ) be the prior distribution of θ (which comes from intuition, prior knowledge, or
something else). Let p(x | θ) be the likelihood function, the joint density of observed
values x = (x1, . . . , xn) with parameter θ. Then

p(x | θ) = Pr(X1 = x1, . . . , Xn = xn | θ)
= θx1(1− θ)1−x1 · · · θxn(1− θ)1−xn

= θx1+···+xn(1− θ)n−x1−···−xn .

If k individuals in the sample vote “no” on 80, then p(x | θ) = θk(1− θ)n−k. We want
p(θ | x), the probability density function of θ given a sample x = (x1, . . . , xn).

By Bayes’s formula we have

p(θ | x) =
p(x | θ)p(θ)

p(x)
.

Often we are interested in

E(g(θ) | x) =

∫
g(θ)p(θ | x) dθ.

Then

p(x) =

∫
p(x | θ)p(θ) dθ

is a normalizing factor.

There are two approaches to solving integration problems:
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• Laplace Approximations (Leonard and Hsu).

• Markov chain Monte Carlo methods or Gibbs samples (Bernardo and Smith).

A.3 Physics Example: The Ising Model

Consider a finite graph G = (V, E). Each vertex may be in either of two states +1 or
−1. A configuration is θ = (θv : v ∈ V ). We have θ ∈ Θ = {−1, 1}|V |, where |V | is
the number of vertices. Each configuration has probability

p(θ) =
1

Z
exp


∑
v 6=w
v∼w

θvθw

 ,

where v ∼ w means that these two vertices are adjacent and Z is a partition function
or normalizing constant given by

Z =
∑
θ∈Θ

exp


∑
v 6=w
v∼w

θvθw

 .

A.4 General Metropolis-Hastings Algorithm

This is a method to produce a random sequence from a given density.

• We generate a vector X such that Pr(X = xj) =
bj

B
, where B =

∑∞
j=1 bj < ∞

cannot be computed. (In the continuous case,
bj

B
is the density function; for

example, bj → b(θ) = p(x | θ)p(θ) and B → p(x) =
∫

p(x | θ)p(θ) dθ.)

• The Metropolis-Hastings algorithm generates a Markov chain which is time-
reversible and has stationary distributions πj =

bj

B
. If {Xj} is such a Markov

chain, then

1

N

N∑
j=1

f(Xj) → Ef(X) =
1

B

∑
j

f(Xj)bj.
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1. Let Q = {qij} be any stochastic matrix, called the proposal matrix.

2. Let A = {αij} be a matrix with values 0 ≤ αij ≤ 1 (probabilities), called
acceptance probabilities.

3. Generate a Markov chain as follows: if Xn = i, generate a candidate for Xn+1:
Xc

n+1 ∼ q(i, ·), i.e. Pr(Xc
n+1 = j | Xn = i) = qij for j = 1, 2. Then we choose

Xn+1 as follows:

• Xn+1 = Xc
n+1 = j with probability αij (accept the proposed candidate), or

• Xn+1 = Xn = i with probability 1 − αij (reject the proposal and repeat
Xn).

4. The resulting (Xn) has the following transition probabilities:

i 6= j pij = αijqij,

i = j pii = qii +
∑
j 6=i

qij(1− αij).

5. We would like to generate a time-reversible Markov chain (Xn) with stationary

distribution πj =
bj

B
. How do we choose Q and A?

• Choose Q so that it is easy and cheap to generate variables.

• Choose A to assume the time-reversibility of (Xn) and correct stationary
distributions. Use the balance equations πipij = πjpji for all i, j. Then

from (4), if i 6= j, πiαijqij = πjαjiqji. Choose αij = min
{

1,
πjqji

πiqij

}
. If

αij = 1, then αji =
πiqij

πjqji
.

• To generate {πj = bj/B}, then αij = min
{

1,
bjqji

biqij

}
, which is independent

of B. We can then choose Xn = i and Xc
n+1 ∼ q(i, ·) so that

Xn+1 =

{
Xc

n+1 = j with probability αij,

Xn = i with probability 1− αij.

If i 6= j, then pij = αijqij. If i = j, then pii = qii +
∑

j 6=i qij(1− αij).

80



Note. There are possible improvements to increase the acceptance rate. For example,
choose T = {tij} symmetric with tij ≥ 0 such that α′ij = αijtij < 1 for all i, j. Then
the α’s also satisfy balance equations πiαijqij = πjαjiqji and

πi[αijtij]qij = πj[αjitji]qji (Hastings).

Then the acceptance probability is π(Xc
n+1)/π(Xn).

A special case is the Gibbs sampler, used in Bayesian interference and introduced by
Geman and Geman in 1984.

The Gibbs sampler breaks down the problem of drawing samples from multivariate
density into one of drawing successive samples from densities of smaller dimensions
(e.g. univariate).

Recall.

• We observe a sample (x1, . . . , xn) from a distribution with parameter θ unknown.

• We know

– p(θ), the prior distribution,

– p(x | θ), the likelihood function.

• The ultimate goal is to calculate Eg(θ) =
∫

g(θ)p(θ | π) dθ or to produce a

sample of values of θ from a posterior density p(θ | x) = p(x|θ)p(θ)
p(x)

and to use

this sample to estimate the density p(θ) and other statistics.

We have p(θ | x) = b(θ)
B

, with b(θ) = p(x | θ)p(θ) and B = p(x) =
∫

p(x | θ)p(θ) dθ.
The acceptance probabilities are αθn,θc

n+1
= min{1, r}, where

r =
p(θc

n+1)q(θ
c
n+1, θn)

b(θn)q(θn, θc
n+1)

=
p(θc

n+1)/q(θn, θ
c
n+1)

p(θn | x)/q(θc
n+1, θn)

.
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Assume that θ = (θ1, θ2) and that θc
1,n+1 is sampled from p(θc

1,n+1 | θ2,n, x), θc
2,n+1 =

θ2,n and that θc
1,n+2 = θ1,n+1, θ

c
2,n+2 is sampled from p(θc

2,n+2 | θ1,n+1, x). Then

q(θn, θ
c
n+1) =


p(θc

1,n+1 | θ2,n, x) if θc
2,n+1 = θ2,n,

p(θc
2,n+1 | θ2,n, x) if θc

1,n+1 = θ1,n,

0 otherwise.

One can calculate r = 1.
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