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1 Introduction

The ideas of homology and homological algebra go back to the late 19th century, when
Poincaré [21] in 1895 introduced simplicial homology as a powerful invariant for cer-
tain classes of topological spaces. But a few years earlier, Hilbert [14] had already
proven his so-called syzygy theorem:

Hilbert’s Syzygy Theorem. If k is a field, then gl dim k[X1, . . . , Xn] = n.

In his paper, Hilbert introduced the term “syzygy” in the context in which it is un-
derstood today; namely, given a module M over a ring R, a syzygy of M is any kernel
of an epimorphism P � M , where M is a projective R-module. Such a syzygy is
unique up to a projective direct summand and “measures” the discrepancy of M from
being projective.

Following the advent of category theory by Eilenberg and Mac Lane [8], progress
in homological algebra increased dramatically. One very important result from the
1950’s, connecting homological algebra with algebraic geometry, is the following:

Theorem. (Auslander-Buchsbaum-Serre, 1956; see [2] and [24].) Let V be an affine
algebraic variety over an algebraically closed field with coordinate ring R. Then the
global dimension of R is finite if and only if V is smooth. If this is the case, then
gl dim R = dim V . (That the global dimension of R is bounded above by n means
that n-fold iteration of the process of taking syzygies of R-modules always leads to a
projective module.)
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A consequence of this is the following result on localizations:

Corollary. (Auslander-Buchsbaum, 1959; see [4].) If V is a smooth affine algebraic
variety over an algebraically closed field, then every localization of its coordinate ring
is a unique factorization domain.

The general idea behind homological algebra is to associate certain invariants to
objects in a category. (In our case, these categories will be categories of modules over
finite-dimensional algebras.) In particular, a key object of study is a chain complex

· · · // An+1
fn+1 // An

fn // An−1
// · · ·

of objects of some abelian category (frequently a category of modules over some ring),
i.e. a collection of objects and maps as above so that fn+1 ◦ fn = 0 for all n. We then
define the nth homology

Hn =
ker(fn)

Im(fn+1)

of our chain complex. Typical examples of such homology groups are the Ext and
Tor groups. The hope is that those objects which have trivial (or very straightfor-
ward) invariants can be easily understood; more complicated invariants measure the
deviation from the easily understood objects. Far more information on homological
algebra can be found, for example, in [25].

In these notes, our primary invariant of a module M will be the projective dimension
of M , namely the least n ∈ N such that the nth iterated syzygy is projective. The
projective dimension is sometimes a good measure of the complexity of a module,
provided that it is finite. However, as we shall see in the example on page 11, some-
times the projective dimension of a very readily understood module is infinite. Hence
we frequently ignore modules of infinite projective dimension.

In response to this fact, the next step is to define the little and big left finitistic
dimensions of a ring. The little (respectively, big) left finitistic dimension of a ring
is the supremum of the projective dimensions of the finitely generated (respectively,
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arbitrary) left modules of finite projective dimension. One can immediately ask in-
teresting questions about these finitistic dimensions: Do the little and big finitistic
dimensions always agree? Are they always finite?

It turns out that both of these questions have been answered in the negative, even if
we require the ring to be commutative and noetherian. The little and big finitistic
dimensions of a commutative noetherian local ring agree if and only if the ring is
Cohen-Macaulay (see [6]). This result follows from results of Auslander and Buchs-
baum [3]. If R is a commutative noetherian ring, then the big finitistic dimension of
R is equal to its Krull dimension (see [9]). Some examples of commutative noetherian
rings with infinite Krull dimension were provided by Nagata [20].

However, the questions remained open in the case of noncommutative artinian rings
for some time. Bass publicized them as problems in [5]. Shortly thereafter, they
became known as the two finitistic dimension conjectures.

Finitistic Dimension Conjectures.

(I) If Λ is a finite-dimensional algebra, then the big and little finitistic dimensions
of Λ coincide.

(II) If Λ is a finite-dimensional algebra, then the big finitistic dimension of Λ is
finite.

At first there were some (very easily proved) partial positive results.

• Bass in [5] showed that if the little finitistic dimension is zero, then the big
finitistic dimension is also zero (i.e. Conjecture I holds in this case).

• Mochizuki in [19] showed that if J is the Jacobson radical of Λ and J2 = 0,
then Conjecture II holds.

Little progress was then made until the early 1990’s. Then many results began to
appear.
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• If Λ is a monomial algebra, then Conjecture II holds. This was shown first by
Green, Kirkman, and Kuzmanovich in 1991 (see [13]).

• If J3 = 0, then Conjecture II holds. This was shown by Green and Huisgen-
Zimmermann in 1991 (see [12]).

• Conjecture I is false, even for monomial algebras. Huisgen-Zimmermann in 1992
found some counterexamples (see [16]). The first such examples are, in finite,
finite dimensional monomial algebras, the class of algebras we are addressing in
these notes.

2 Path Algebras Modulo Relations and Monomial

Algebras

Definition. Let Q be a quiver (that is, a finite directed multigraph) and K a field.
Define KQ to be the K-vector space having as basis all paths in Q including those of
length 0. KQ carries a K-algebra structure, with multiplication defined as follows: if
p and q are paths in KQ, set

pq =

{
p after q if this is well-defined,

0 otherwise.

Extend the multiplication bilinearly.

Therefore KQ is a K-algebra with identity given by 1 =
∑n

i=1 ei, where e1, . . . , en are
the paths of length 0, which we identify with the vertices themselves.

Examples and Remarks.

(1) Suppose that Q is the quiver

1 // 2 // · · · // n

Then KQ is isomorphic, as a K-algebra, to the algebra of lower triangular n×n
matrices.
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(2) Suppose that Q is the quiver
•99 ee

Then KQ is isomorphic to the free algebra K〈x, y〉 on two generators.

(3) Suppose that Q is the quiver

1
((
66 2

Then KQ is called the Kronecker algebra, and it is isomorphic to the matrix
algebra (

K 0
K ⊕K K

)
.

(4) KQ is a finite dimensional algebra if and only if Q contains no oriented cycles.

Definition. An ideal I ⊆ KQ is said to be admissible if it consists of linear com-
binations of paths of length at least 2, and there exists a positive integer L such that
all paths of length L belong to I. (Hence all paths of length at least L belong to I.)

Note. KQ/I is a finite dimensional algebra whenever I ⊆ KQ is an admissible ideal.

If I is an admissible ideal, we call KQ/I a path algebra modulo relations, or some-
times simply a path algebra.

Definition. We say that two rings R and S are Morita equivalent (and we write
R ≈ S) if there is an additive equivalence of categories between R-Mod and S-Mod.
(If R and S are Morita equivalent, then there is also an additive equivalence of cate-
gories between Mod-R and Mod-S.)

Remark. If R ≈ S, then the representation theories of R-Mod and S-Mod are in-
terchangeable.

Theorem. (Gabriel) Suppose that K is algebraically closed. Then every finite di-
mensional K-algebra A is Morita equivalent to some path algebra modulo relations
KQ/I. Moreover, Q is completely determined (up to quiver isomorphism) by A; I,
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however, is not unique in general.

For a proof, see §4.3 of [10].

Elementary Remarks. Let Λ = KQ/I, where I ⊆ KQ is an admissible ideal. We
identify any path of length zero with its residue class.

(1) If Q has exactly n vertices e1, . . . , en, then the ei ∈ Λ form a full sequence of
primitive idempotents, i.e. all ei are primitive, eiej = δijei, and 1 =

∑n
i=1 ei.

(Recall that an idempotent e 6= 0 is called primitive if whenever we write e =
e′ + e′′ as the sum of two idempotents with e′e′′ = e′′e′ = 0, then either e′ = 0
or e′′ = 0.)

(2) If e1, . . . , en ∈ Λ are the full sequence of primitive idempotents of Λ, then
Λe1, . . . , Λen are precisely the indecomposable projective left Λ-modules up to
isomorphism, and Λei 6∼= Λej for i 6= j. Moreover, every projective in Λ-Mod is
a direct sum of copies of the Λei’s.

(3) Let J denote the Jacobson radical of Λ. Then Si = Λei/Jei = K(ei+Jei) ∼= Kei

(this is a vector space isomorphism, as Si is 1-dimensional) are all the simple
modules up to isomorphism, and Si 6∼= Sj for i 6= j.

(4) J is a 2-sided ideal generated by the α + I, where α is an arrow in Q. From
now on, if p is a path in KQ, we call p + I a path in Λ and often write p for
p + I. Then

J =

{∑
finite

kipi

∣∣∣∣∣ ki ∈ K, pi ∈ Λ are paths of positive length

}
.

(Note that one cannot in general talk about the “length” of a path, but one can
talk about paths of “positive length.”) Suppose I contains all paths of length
L. Then JL = 0, so J is nilpotent. Moreover,

Λ/J =
n⊕

i=1

Si.
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Definition. Let M be in Λ-Mod, and let J be the Jacobson radical of Λ. Then P
in Λ-Mod is called a projective cover of M if there is an epimorphism f : P � M
with ker(f) ⊆ JP .

Theorem. If Λ is any finite dimensional algebra, then every M in Λ-Mod has a
projective cover. If M is finite dimensional, then so is P , and

dimK(P ) = min{dim Q | Q is a projective allowing for an epimorphism Q � M}.

Furthermore, P and ker(f) are uniquely determined up to isomorphism by M .

For a proof, see Theorem 28.4 of [1].

Definition. If f : P → M is a projective cover, we call ker(f) the first syzygy of
M and write ker(f) = Ω1(M).

Definition.

• A path algebra Λ = KQ/I is called a monomial algebra if I can be generated
by some (finite) set of paths.

• The paths of Q carry the following partial order: we say that p ≤ q if p is a right
subpath of q (i.e. q = p′p for some path p′). Since Λ is a monomial algebra, this
partial order induces a partial order on the set of nonzero paths in Λ.

Examples.

(1) If Λ = KQ/I is a path algebra modulo relations with J2 = 0, then Λ is a
monomial algebra. For example, if Q is the quiver

1 // 2 // · · · // n

then
KQ

〈all paths of length 2〉
is a monomial algebra.
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(2) If Q is the quiver

2
β

��=
==

==
==

1

α
@@�������

γ
��=

==
==

==
4

3
δ

@@�������

then Λ = KQ/〈βα − δγ〉 is not a monomial algebra. In fact, it is not even
isomorphic to a monomial algebra.

(3) Let Q be the quiver

1
α

((

β

66 2
γ // 3

and Λ = KQ/〈γα − γβ〉. Then Λ is isomorphic to a monomial algebra. Let
Ĩ = 〈γβ〉, and set Λ̃ = KQ/Ĩ. Then Λ ∼= Λ̃ as K-algebras. An explicit
isomorphism is given by sending ei+I 7→ ei+Ĩ, α+I 7→ α+Ĩ, β+I 7→ (α+β)+Ĩ,
γ + I 7→ γ + Ĩ and extending linearly.

(4) If Q is the quiver
•α 99 βee

and Λ = KQ/〈α2, β2, αβ − βα〉, then Λ is not isomorphic to a monomial alge-
bra. This will follow from a theorem below.

Proposition. If p1, . . . , pr are nonzero paths in Λ such that, for i 6= j, pi is not a
right subpath of pj, then

r∑
i=1

Λpi =
r⊕

i=1

Λpi.

Proof. Suppose
∑r

i=1 λipi = 0. Since no pj is a right subpath of p1, we must have
λ1p1 = 0, for otherwise there would be no other summand to cancel out λ1p1. Simi-
larly, λ2p2, and, in general, each λipi = 0. Hence

∑r
i=1 Λpi is actually a direct sum,

as desired.
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Comment. “Path length” in Λ is in general not well-defined. Suppose Q is the
quiver

1
α //

γ
��=

==
==

==
2

β // 5

3
δ

// 4

ε

@@�������

and I = 〈βα − εδγ〉 and Λ = KQ/I. Then βα + I does not have a well-defined
length, as βα + I = εδγ + I. However, if Λ is a monomial algebra, then path length
is well-defined. Furthermore, if Λ is a monomial algebra, then the nonzero paths of
Λ form a K-basis for Λ.

Proposition. Suppose Q is a quiver, and suppose I is an ideal of KQ generated by
paths. Suppose m is the maximum length of any path in some generating set for I,
and suppose there are h paths in KQ of length m. Then I is admissible if and only
if for every path p of length m + h in KQ, p ∈ I. (That is, p can be written as p′qp′′,
where p′, q, and p′′ are paths, and q is in the generating set for I.)

Proof. The reverse direction is clear. For the forward direction, suppose that an
ideal I is admissible, but there is a path p of length at least m+h+1 that is not in I.
Let pi be the subpath of length m consisting of the ith through (m+ i−1)th arrows in
p. (That is, p = qipiri, where the length of qi is i−1 and the length of pi is m.) There
are at least h + 1 such subpaths pi of p. By the pigeonhole, then, there exist i and
j so that pi = pj. Assume without loss of generality that i < j, and let p = qisipjrj.
Then all paths of the form qis

k
i pjrj are not in I. Hence I is not admissible.

3 Basics on Homological Dimensions

Definition. Let M be a left Λ-module.

(1) A projective resolution of M is an exact sequence of left Λ-modules

· · · → P1 → P0 → M → 0,

where each Pi is projective.
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(2) A minimal projective resolution of M is an exact sequence

· · · // P2
f2 //

f̄2 ## ##GG
GG

GG
GG

G P1
f1 //

f̄1 ## ##GG
GG

GG
GG

G P0
f0 // M → 0

ker(f1)
- 

;;wwwwwwwww
ker(f0)

- 

;;wwwwwwwww

where all Pi’s are projective and each fi : Pi → Pi−1 gives rise to a projective
cover f̄i : Pi → Im(fi) = ker(fi−1) of ker(fi−1). Since projective covers are
unique up to isomorphism, minimal projective resolutions are essentially unique.

(3) The projective dimension of M , written p dim M , is the length of a minimal
projective resolution of M . Note that this length may be infinite, in which case
we write p dim M = ∞.

(4) If

· · · → P2
f2→ P1

f1→ P0
f0→ M → 0

is a minimal projective resolution of M , then define the ith syzygy of M to be
Ωi(M) = ker(fi−1). Hence we have the following commutative diagram:

· · · // P2
f2 //

f̄2 ## ##FF
FF

FF
FF

F P1
f1 //

f̄1 ## ##FF
FF

FF
FF

F P0
f0 // M → 0.

Ω2(M)
- 

;;xxxxxxxxx
Ω1(M)

- 

;;xxxxxxxxx

(5) The left global dimension of Λ is ` gl dim Λ = sup{p dim M | M is a left
Λ-module}. The right global dimension r gl dim Λ is defined analogously.

Remarks.

(1) Suppose p dim M ≥ d. Then p dim M = d + p dim Ωd(M).

(2) If M =
⊕

i∈I Mi, then p dim M = sup{p dim Mi | i ∈ I}.

(3) If Λ is a finite-dimensional algebra, then ` gl dim Λ = r gl dim Λ = sup{p dim S |
S is a simple Λ-module}. We simply write gl dim Λ in the future.
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Example. Suppose Λ = KQ/I, where Q is the quiver

1
α1 // 2

α2 // · · · αn−1 // n

and I = 〈all paths of length 2〉. The simple modules are Si = Λei/Jei for i = 1, . . . , n.
Since Sn is projective, p dim Sn = 0. A minimal projective resolution of Sn−1 is

0 // Λen
//

&& &&LLLLLLLLLL Λen−1
f0 // // Sn−1

// 0

Jen−1
∼= Sn

+ �

88qqqqqqqqqqq

so p dim Sn−1 = 1. A minimal projective resolution of Sn−2 is

0 // Λen
//

&& &&LLLLLLLLLL Λen−1
//

'' ''OOOOOOOOOOO
Λen−2

// Sn−1
// 0

Jen−1
∼= Sn

+ �

88qqqqqqqqqqq
Jen−2

∼= Sn−1

* 


77ooooooooooo

so p dim Sn−2 = 2. Inductively, p dim Si = n− i, so gl dim Λ = n− 1.

It turns out that gl dim Λ is not always a good measure for the “complexity” of the
category of Λ-modules.

Example. Let Q be the quiver

1 αee ,

let Λ = KQ/〈α2〉 ∼= K[X]/(X2), and let J be the Jacobson radical of Λ. Then
gl dim Λ = ∞, but the module theory of Λ is easy: Every left Λ-module is a direct
sum of copies of Λe1 =Λ Λ and copies of S = Λe1/Je1

∼=Λ (Λ/J). Here p dim Λe = 0
and p dim S = ∞. Since

p dim

(⊕
i∈I

Mi

)
= sup

i∈I
{p dim Mi},

every left Λ-module is either projective or else has infinite projective dimension.
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Definition. Let Λ be a finite-dimensional algebra. Define the left big and little
finitistic dimensions of Λ to be

` Fin dim Λ := sup{p dim M | M in Λ-Mod, p dim M < ∞},
` fin dim Λ := sup{p dim M | M in Λ-mod, p dim M < ∞},

respectively.

Remarks.

• In the above example, all finitistic left and right dimensions of Λ are zero.

• If gl dim Λ < ∞, then ` fin dim Λ = ` Fin dim Λ = r fin dim Λ = r Fin dim Λ =
gl dim Λ (because the global dimension is attained on a simple module).

Conjectures and related problems. (Bass 1960 popularized them first as prob-
lems, but they appear to have originated with Auslander and Buchsbaum.) Let Λ be
a finite-dimensional algebra.

(1) ` fin dim Λ < ∞.

(2) ` fin dim Λ = ` Fin dim Λ.

(3) Problem: Specify sets S , S ′ of modules in Λ-mod such that ` fin dim Λ =
sup{p dim M | M ∈ S } and ` Fin dim Λ = sup{p dim M | M ∈ S ′}. Approx-
imate ` fin dim Λ and ` Fin dim Λ, up to a specified error, from a finite set of
data, given in terms of quiver and relations of Λ.

These notes address mainly this last problem for the case of monomial algebras.

Main Theorem. Suppose Λ = KQ/I is a monomial algebra.

(1) For any M in Λ-Mod,

Ω2(M) ∼=
⊕
i∈I

Λqi,

where each qi is a nonzero path in Λ of positive length, with repetitions permit-
ted.
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(2) ` Fin dim Λ < ∞. (Of course, this also implies that ` fin dim Λ < ∞.)

(3) If S = {Λq | q is a nonzero path of positive length in Λ with p dim Λq < ∞},
define

s =

{
−1 if S = ∅,

max{p dim Λq | Λq ∈ S } if S 6= ∅.

Then
s + 1 ≤ ` fin dim Λ ≤ ` Fin dim Λ ≤ s + 2.

Note that S is finite, since Λ contains only finitely many nonzero paths.

Part of Proof. We first show (1)⇒(2). Suppose M is in Λ-Mod with p dim M < ∞.
Without loss of generality, we may assume p dim M ≥ 2. Then

Ω2(M) ∼=
⊕
i∈I

Λqi,

where each qi is a nonzero path in Λ of positive length, with repetitions permitted,
for certain paths qi 6= 0 in Λ with p dim Λqi < ∞. Since there are only finitely many
nonzero paths of positive length in Λ, p dim Ω2(M) = sup{p dim Λqi | i ∈ I} is finite.
Now p dim M = 2 + p dim Ω2(M) ≤ 2 + s, where s is as in (3).

We now show (1)⇒(3). We know that

s ≤ ` fin dim Λ ≤ ` Fin dim Λ ≤ s + 2.

We need only show now that we may safely replace s with s + 1 on the left in the
above inequality. For S 6= ∅, s + 1 = 0, and the inequality is trivial. So let S 6= ∅,
and suppose q is a nonzero path of positive length in Λ with p dim Λq = s. Let q be
a path starting in e. Then Λq ⊆ Je. Hence, if X = Λe/Λq, then

Λe
can−→ X =

Λe

Λq

is the projective cover of X. [Note that ker(can) ⊆ Je.] Thus Ω1(X) = ker(can) = Λq
has projective dimension s, so p dim X = s + 1 by Remark 3 on page 10.
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For a proof of (1), see [15].

We now need some tools for dealing with examples. We will not provide proofs for
these, but we will point out references where arguments can be found.

Proposition. If Λ = KQ/I if a monomial algebra with Jacobson radical J , then for
any Λ-module M , either p dim M ≤ dimK J + 1 or p dim M = ∞. In other words,
` fin dim Λ ≤ ` Fin dim Λ ≤ dimK J + 1.

Proof. We first note that if Ωk(M) =
⊕

i∈I Mi, then

p dim M = k + sup{p dim Mi | i ∈ I}. (∗)

So suppose M has finite projective dimension, but that p dim M ≥ J + 2. Consider
the sequence (Ω2(M), Ω3(M), Ω4(M), . . .). By the Main Theorem, each Ωk(M) above
is a direct sum of modules generated by paths. There are only dimK J different paths
in Λ, so the supremum in (∗) is actually a maximum (i.e. the supremum is achieved).
Let pk be some path in Λ for which p dim M = k +p dim Λpk (which exists for k ≥ 2
by (∗) and the Main Theorem). Now consider the sequence (p2, p3, . . . , pJ+2). By the
pigeonhole principle, there must exist i and j (with i < j) so that pi = pj. But then
Λpi must be a direct summand of Ωk(M) whenever M is of the form i+r(j−i). Hence
there are infinitely many k for which Ωk(M) is nonzero. Therefore p dim M = ∞,
contradicting our hypothesis.

Auxiliary facts.

(1) Krull-Schmidt Theorem, weak version (see [1], Theorem 12.9). Every finitely
generated module is a finite direct sum of indecomposable modules. Further-
more, if M and N are finitely generated Λ-modules, with M = M1 ⊕ · · · ⊕Mr

and N = N1⊕· · ·⊕Ns, where each Mi and Nj is indecomposable, then M ∼= N
if and only if r = s and there exists some π ∈ Sr with Mi

∼= Nπ(i) for all i.

(2) (See [5].) For a left Λ-module M , define the socle of M to be soc(MΛ) =
∑

S S,
where the sum is taken over all simple submodules of M . Then ` fin dim Λ = 0 if
and only if soc(ΛΛ) contains an isomorphic copy of every simple right Λ-module.

(3) A string algebra (see [18]) is a monomial algebra Λ = KQ/I such that
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(i) For every vertex e of Q, there are at most two arrows entering e and at
most two arrows leaving e.

(ii) If α : e → e′ is an arrow in Q, and β1 and β2 are arrows ending in e, then
either αβ1 ∈ I or αβ2 ∈ I; if γ1 and γ2 are two arrows starting in e′, then
either γ1α ∈ I or γ2α ∈ I.

String algebras were originally studied by Gelfand and Ponomarev in [11], who
showed that the indecomposable finitely generated modules over specific string
algebras can be explicitly described. They have been studied further by Ringel
in [22] and by Donovan and Freislich in [7].

(4) If Λ is a string algebra, then the finitely generated indecomposable modules can
be described explicitly.

Example. Suppose Λ = KQ/〈all paths of length 2〉, where Q is the quiver

1

α

�� β // 2.

Claim.

(a) ` fin dim Λ = 1.

(b) r fin dim Λ = 0.

We first show (b). We see that Λα ∼= S1 and Λβ ∼= S2 are both contained in ΛΛ. So
soc(ΛΛ) ∼= S1 ⊕ S2

2 . Therefore by (3) above, r fin dim Λ = 0.

For (a), we note that Λ is a string algebra. All the indecomposable finitely generated
left Λ-modules are (up to isomorphism) S1 (which has infinite projective dimension),
S2 (which has projective dimension zero), Λe1 (which has projective dimension zero),
Λe1/Λα (which has Ω1(Λe1/Λα) = Λα ∼= S1 and hence infinite projective dimension),
and Λe1/Λβ (which has Ω1(Λe1/Λβ) ∼= S2 and hence projective dimension one); see
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e.g. [22] for a general description of the finitely generated indecomposable modules
over a string algebra. By the first of the auxiliary facts listed above, every finitely
generated module is a finite direct sum of indecomposables. Thus ` fin dim Λ = 1 by
Remark (2) on page 10.

Example. Fix n ∈ N. We’ll give an example of Λ = KQ/I such that all simple
left Λ-modules have infinite projective dimension, but ` fin dim Λ = n. (Here, again,
r fin dim Λ = 0.) Let Q be the quiver

1

ω1

XX
α1 // 2

ω2

XX
α2 // · · · // n

ωn

ZZ
αn // n + 1

ωn+1

XX

and I = 〈ω2
i , αj+1αj, αjωj | 1 ≤ i ≤ n+1, 1 ≤ j ≤ n〉. Note that Λ is a string algebra.

Then Λωi is a direct summand of Jei = Ω1(Si). (Indeed, Jei = Λωi ⊕ Λαi.)

(a) Since Si
∼= Λωi, we see that Si is isomorphic to a direct summand of Ω1(Si),

which shows that p dim Si = ∞.

(b) On the other hand, one checks that p dim Λe1/Λα1 = n. Indeed,

Ω1(Λe1/Λα1) = Λα1
∼= Λe2/Λα2,

and, more generally, for i ≤ n we have

Ω1(Λei/Λαi) = Λαi
∼=

{
Λei+1/Λαi+1 for i < n,

Λen+1 for i = n.

Thus
Ωn(Λe1/Λα1) = Λen+1;

that is, the length of a minimal projective resolution of Λe1/Λα1 is n. Hence
` fin dim Λ ≥ n.

We will return to this example for a more intuitive graphical proof of the inequality
“` fin dim Λ ≥ n.”

We now return to an old example, namely Example 2 on page 8. We claimed that Λ
is not a monomial algebra. Let M = Λe1/Λβα. Then Ω1(M) ∼= Λβα ∼= S1, and

Ω2(M) ∼= Ω1(S1) =
Λx⊕ Λy

Λαx + Λβy + Λ(βx− αy)
,
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where x = y = e1. This module is indecomposable but not cyclic. Then Theorem 3
on page 12 for second syzygies over monomial algebras proves the claim.

4 Tree Modules over Monomial Algebras, their

Graphs, and their Syzygies

The algorithm which we will present in this section will allow us to compute the
number s occurring in the Main Theorem of §2 from the quiver and relations of a
monomial algebra Λ.

In fact, there is a computer program that can compute this number s once the user
enters a quiver and an admissible ideal; see [23].

Definitions. Let Λ = KQ/I be a monomial algebra.

(1) A tree module in Λ-mod rooted in a vertex e of Q is a module of the form

T ∼=
Λe∑

v∈V Λv
,

where V is a set of paths in Λ which start at e. Note that T = 0 iff e ∈
V . Moreover, the only simple tree module rooted at e is S = Λe/Je up to
isomorphism.

(2) Given a tree module T = Λe/V , where V =
∑

v∈V Λv, the branches of T are
those paths in Λe \ V (i.e. those nonzero paths in Λ which start in e and do
not belong to V ) which are maximal under the partial order ≤ introduced on
page 7.

Remarks. Let T = Λe/
∑

v∈V Λv be a nonzero tree module, where V is a set of
nonzero paths in Λ which start in e. (Recall that we identify a full set e1, . . . , en of
primitive idempotents of Λ with the vertices of Q, and suppose e = et.)
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• Then T/JT ∼= St = Λet/Jet has dimension 1 as a K-vector space, and for
1 ≤ ` ≤ L,

J `T

J `+1T
∼=

n⊕
i=1

S
τ
(`)
i

i ,

where the τ
(`)
i are nonnegative integers with

∑n
i=1 τ

(`)
i = dimK J `T/J `+1T .

• Suppose that b1, . . . , br are the branches of T . Then, given ` ∈ {0, . . . , L} and
i ∈ {1, . . . , n}, the number of distinct right subpaths of length ` of the bk which

end in i is equal to τ
(`)
i .

Definitions (continued).

(3) Suppose T is a nonzero tree module, say T = Λe/V = Λe/
⊕

v∈V Λv as above.
The layered and labeled graph g(T ) of T is the undirected rooted tree graph
defined as follows:

(a) The graph g(T ) has dimK T vertices, arranged in L + 1 rows (numbered 0
to L from top to bottom) in the following manner:

• If J `T/J `+1T ∼=
⊕n

i=1 S
τ
(`)
i

i , the `th row of the graph contains precisely

τ
(`)
i vertices labeled i.

• The graph g(T ) has edges only between vertices of adjacent rows and
no multiple edges. Each edge from a vertex i to a vertex j is labeled
by the name of an arrow α : i → j.

(b) In view of the preceding remarks, there is precisely one labeled undirected
tree graph (up to graph isomorphism) with the specified vertex set such
that all branches of T occur as edge paths when read from the top down.
(Here we identify an edge path

et
α1 ei1

α2 ei2 · · · ein−1

αm eim

in g(T ) with the path αmαm−1 · · ·α1. More specifically, if JT/J2T ∼=⊕n
i=1 S

τ
(1)
i

i , there are, for each i, precisely τ
(1)
i distinct arrows et → ei.

These arrows give rise to one edge each from the vertex labeled t in row 0
to the τ

(1)
i vertices labeled i in row 1, and so forth.
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Remark. The module Λe/Je is a tree module because

Je =
⊕

Λv,

where the direct sum is taken over all paths v of positive length starting at e. More-
over, if T 6= 0 is a tree module not isomorphic to Λe/Je, then there is a nonzero
submodule U ⊆ T with T/U ∼= Λe/Je.

Example. Let Q be the quiver

1

ω

�� α1
((

α2 66 2
β

((
3γhh

δ

]]

and Λ = KQ/〈ω2, all paths of length 4〉. The graph of Λe1 is

1
ω

pppppppppppppp

α1 ==
==

==
=

α2

TTTTTTTTTTTTTTTTTTTTT

1
α1

��
��

��
�

α2

==
==

==
= 2

β

2

β

2

β

2

β

3
δ

��
��

��
�

γ

==
==

==
= 3

δ
γ

==
==

==
=

3 3 1 2 1 2

Now let

T =
Λe1

Λα1ω + Λδβα1 + Λγβα2

.

The branches of T are βα2ω, γβα1, and δβα2. Thus g(T ) is

1
ω

��
��

��
��

α1
α2

::
::

::
::

0th layer

1

α2

2

β

2

β

1st layer

2

β

3

γ

3

δ

2nd layer

3 2 1 3rd layer
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Remark. Every tree module is indecomposable. To see this, note that if T is a tree
module, its unique maximal submodule is JT . Now suppose we had a decomposition
T = T1 ⊕ T2, where T1 and T2 are nonzero. Let U1 and U2 be maximal submodules
of T1 and T2, respectively. Then U1 ⊕ T2 and T1 ⊕ U2 would be distinct maximal
submodules of T . Hence T must be indecomposable.

Comments.

(1) If q is a nonzero path in Λ which ends in e, then Λq is a tree module with root
e.

(2) Suppose M =
⊕s

i=1 Ti is a direct sum of tree modules Ti. By the Krull-Schmidt
Theorem (comment 3 on page 14), every decomposition of M into indecompos-
able modules is of the form M1 ⊕ · · · ⊕Ms, with Mi

∼= Ti.

So defining the layered and labeled graph g(M) of M as the juxtaposition of the g(Ti)
is unambiguous.

Theorem. Let Λ be a monomial algebra.

(1) For every nonzero path q in Λ, the left ideal Λq is a tree module.

(2) For any Λ-module M , the syzygies Ωk(M) for k ≥ 2 are direct sums of tree
modules.

(3) If M is a direct sum of tree modules, then Ω1(M) is again a direct sum of tree
modules.

Remarks.

(1) If M = Λe/V is a tree module, the branches of M are uniquely determined by
the isomorphism class of M .

(2) If we know that M is a tree module, the branches of M determine M up to
isomorphism.
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(3) Up to isomorphism, the simple module Λe/Je is the unique tree module of
minimal K-dimension with root e. In this case, e is the only branch of the tree
module.

(4) Suppose Λ is a monomial algebra. Then up to isomorphism, Λe is the unique
tree module of maximal K-dimension with root e.

(5) If M is a non-simple tree module, then all branches of M have positive length.

From now on we assume that Λ = KQ/I is a monomial algebra.

Proof of the Theorem.

(1) Let e be the endpoint of q. Consider the map f : Λe → Λq given by λe 7→
λeq = λq. Clearly f is an epimorphism, so Λq ∼= Λe/ ker(f). We will show that

ker(f) =
∑
v∈V

Λv,

where V consists of paths v in Λe with vq = 0 in Λ. Let 0 6= λe ∈ ker(f);
say λe =

∑
kipi, where ki ∈ K×, and the pi are nonzero paths in Λe. Then

0 = f(λe) =
∑

kipiq. Suppose that p1q, . . . , prq ∈ Λ are the nonzero paths
among the piq ∈ Λ. Since the piq are linearly independent in Λ, the equality

r∑
i=1

kipi = 0

implies that r = 0. Thus λe =
∑

kipi as before, with piq = 0 for all i.

(2) This follows from part (1) and the structure theory for syzygies Ωk(M), k ≥ 2.

(3) It clearly suffices to prove the claim for a tree module M . Say M = Λe/V ,
where V =

∑
v∈V Λv, and V is a set of nonzero paths of positive length in Λe.

We know that the canonical epimorphism π : Λe → M is a projective cover
of M . Hence Ω1(M) = ker π = V . Thus once we have shown that there exist
v1, . . . , vr ∈ V such that V =

⊕r
i=1 Λvi, we obtain Ω1(M) =

⊕r
i=1 Λvi, and

each Λvi is a tree module by part (1). To prove this, let v1, . . . , vr ∈ V be
the distinct minimal paths in V under ≤ (the partial order in part (2) of the
Definition on page 7) because every path in V contains one of {v1, . . . , vr} as a
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right subpath. Then
∑r

i=1 Λvi = V . Since vi 6≤ vj whenever i 6= j, we conclude
that

∑r
i=1 Λvi =

⊕r
i=1 Λvi.

For an important class of monomial algebras, the string algebras, defined on page 14,
we can improve on the theorem bounding the finisitic dimension of a monomial alge-
bra from above and below in terms of the number s.

Theorem. If Λ is a finite-dimensional string algebra, then the number s + 1 defined
in the beginning of §3 is equal to ` fin dim Λ.

See [18] (especially Proposition 2 and Theorem 3) for a proof.

We now return to the example on page 16. The indecomposable projective left Λ-
modules have the following graphs:

Λe1 Λe2 · · · Λen Λen+1

1

ω1
α1

BB
BB

BB
BB

B 2

ω2
α2

BB
BB

BB
BB

B n

ωn
αn

HH
HH

HH
HH

HH n + 1

ωn+1

1 2

ω2

2 3

ω3

n n + 1

ωn+1

n + 1

2 3 n + 1

We see that p dim Si = ∞ for i = 1, 2, . . . , n + 1. Thus S = {α1, . . . , αn}, and
p dim Λαi = n− i. Hence ` gl dim Λ ≥ n.

We have mostly only discussed computing the finitistic dimensions to within an error
of one. However, sometimes we can compute the finitistic dimensions exactly, both
in cases in which the finitistic dimensions are equal to s + 1 and those in which the
finitistic dimensions are equal to s + 2.
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Theorem. Let s be as above, with s 6= −1, and let q1, . . . , qt be all the paths of
positive length with p dim qi = s. Decompose each qi as follows: let qi = αipi, where
αi has length 1 and pi is some path with length at least 0.

(1) If for all j = 1, . . . , t and all w ∈ r. annJ qj, then ` fin dim Λ = ` Fin dim Λ =
s + 1.

(2) If there is some j with 1 ≤ j ≤ t and a set of paths A ⊆ r. annJ qj with pjA 6= 0
in Λ satisfying p dim `. annΛ A < ∞, then ` fin dim Λ = ` Fin dim Λ = s + 2.

For a proof, see [15].
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