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Abstract. In this article, we discuss some quantum algorithms for determining the group
of units and the ideal class group of a number field. Assuming the generalized Riemann
hypothesis, we will show furthermore that these algorithms require only quantum polynomial
time.

1. Introduction

Two very important problems in computational algebraic number theory are the com-
putations of the unit group and the ideal class group of an algebraic number field. These
groups are very important objects both in algebraic number theory and in other areas of
mathematics.

Ideal class groups of number fields were first studied by Gauß in 1798. They also played
a major role in several early attempts at proving Fermat’s Last Theorem starting with the
work of Kummer. In particular, if p is an odd prime and p does not divide the class number
of Q(ζp), where ζp is a primitive pth root of unity, then it can be shown (see [5]) without too
much difficulty that

xp + yp = zp

has no integer solutions in which p - xyz. (The case of p | xyz is also treated in [5], but it is
more difficult.)

In this paper, we discuss algorithms that compute the unit group and the ideal class group
of a number field in quantum polynomial time. The algorithms we study here are due to
Hallgren [2]. In the classical case, these two problems are typically solved simultaneously.
In the quantum case, however, we first need to compute the unit group, and then we use the
result of that computation to compute the ideal class group.

2. Number Theoretic Preliminaries

Of key importance in algebraic number theory is the Galois group of a field extension; if
L/K is a field extension, then Gal(L/K) is the group of field automorphisms of L that fix
every element of K. We frequently write elements of the Galois group multiplicatively, i.e.
we write xσ rather than σ(x).

Definition 1. An (algebraic) number field K is a finite field extension of the field of rational
numbers Q contained in the field of complex numbers C. The ring of integers o = oK of
K is the set of roots of monic polynomials f(x) ∈ Z[x] lying in K. The degree of K is
the dimension of K considered as a vector space over Q; we write [K : Q] for this number.
If [K : Q] = d, and o = Zα1 + · · · + Zαd, then the discriminant of K is defined to be
∆ = det(Tr(αiαj))1≤i,j,≤d, where Tr : F → Q is given by x 7→

∑
σ∈Gal(K/Q) xσ.
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It turns out (see e.g. Chapter 4 of [1]) that the structure of the group of units o× of o can
be described quite explicitly.

Theorem 2. (Dirichlet’s Unit Theorem.) Suppose K is a number field. If K has r1 distinct
embeddings into R and r2 complex conjugate pairs of embeddings into C, and µK is the group
of roots of unity of K, then

o× ∼= µK ⊕ Zr1+r2−1.

Therefore to compute the unit group of a number field, it suffices to list generators of the
torsion-free part of o×.

In the case of a real quadratic field Q(
√

d), d > 0 a squarefree integer, finding a generator
of the torsion-free part of o× is equivalent to finding the smallest nontrivial solution to Pell’s
equation x2 − dy2 = 1.

Another important group in algebraic number theory is the ideal class group. To define
the ideal class group, we first need the notion of a (fractional) ideal.

Definition 3. A fractional ideal of o is a finitely generated o-submodule of K.

It is well-known that in a Dedekind domain (such as the ring of integers of a number field),
every fractional ideal is invertible. (That is, for every fractional ideal a, there is another
fractional ideal b so that ab = o.) Therefore the fractional ideals of o form an abelian group
under multiplication with identity o; this group is denoted by IK . The principal fractional
ideals (i.e. those of the form ao for some a ∈ K×) form a subgroup PK of IK .

Definition 4. The ideal class group Cl(K) of K is the quotient group IK/PK .

The major result about ideal class groups is the following theorem:

Theorem 5. If K is a number field, then Cl(K) is a finite group. We call its order the class
number of K.

3. The Algorithm for Computing the Unit Group

In what follows, we will assume that we are fixing a positive integer d ≥ 2, and that the
number fields considered are of degree d. We will enter the number field by inputting the
discriminant ∆ of K. Our algorithms will run in polynomial time in log |∆| and d.

The output format is slightly more problematical: in general, a generating set for the unit
group will not be polynomial in log |∆|. However, the logarithms of the elements of the
generating set is polynomial in log |∆|; therefore if α is in the generating set, we will output
the vector Log(α) = (log |α|1, . . . , log |α|r), where | · |i runs over some r = r1 + r2 − 1 of the
r1 + r2 absolute values determined by embeddings of K into C. (Complex conjugate pairs of
embeddings into C determine the same absolute value.) These vectors will not be precisely
units since the logarithms will be irrational; however, we can specify them to the necessary
degree of precision.

Under this logarithm map, the units of o (modulo the roots of unity, which can easily be
computed) become a lattice in Rr. Therefore it will be necessary to study lattices on Rr.

The logarithm map allows us to talk about reduced ideals. We call a fractional ideal I
reduced if 1 ∈ I and for any α 6= 0 in I, at least one coordinate of Log(α) is nonnegative. In



QUANTUM ALGORITHMS IN ALGEBRAIC NUMBER THEORY 3

the following, we generally implicitly assume that our ideals are reduced without mentioning
it every time. More generally, we say that µ ∈ I is a minimal element of I if for any α 6= 0
in I, some coordinate of Log(α)−Log(µ) is nonnegative. Hence a fractional ideal is reduced
if 1 is a minimal element.

We first state the algorithm. Later, we will explain how the difficult step can be imple-
mented on a quantum computer.

Theorem 6. There exists an algorithm which computes generators for the unit group of a
number field K in quantum polynomial time. More precisely, if we enter a number field whose
logarithmic unit group is L, the algorithm will provide a set of vectors which approximate a
basis for L.

(1) Find a basis for the dual basis L⊥ = {u ∈ Rr | u · v ∈ Z for all v ∈ L} as follows:
(a) Take a Fourier sampling of an appropriate lattice-hiding function fN a constant

number of times.
(b) Use a spanning set of vectors to compute a basis B.

(2) Compute (B−1)t, and use this matrix to find a basis for L.
(3) Check that the resulting vectors correspond to units of K. If they do not, try the

algorithm again.

By far the most difficult part of this algorithm (and also the only part that involves
quantum computers!) is step (1). We will describe how to do step (1) in the next section.
It will be done by an application of the hidden subgroup problem on Rr that we will be able
to solve.

In order to apply the hidden subgroup algorithm in the next section, we first need a
function hiding the logarithmic unit group L. We define f : Rr → IK × Rr by x 7→ (Ix, δx),
where Ix = 1

µ
o is an ideal with minimal element µ so that |Log µ − x| is minimized, and

every coordinate of Log µ− x is nonnegative. We then set δx = x− Log µ.
In quantum algorithms, we must typically work with discrete functions, so we define

fN : Zr → IK × Zr by fN(i) = (Ii/N , ki/N), where the jth coordinate of ki/N is bN(δi/N)jc.

4. Hidden Subgroups on Rr

In this section, we discuss how to retrieve a hidden lattice L from a function fN which
hides it. This process can then be applied to the function fN and the lattice L from the
previous section. Our method for computing a basis of L will be to start by finding a basis
matrix B of L⊥. Once we have done that, (B−1)t will be a basis for L.

The first step in our quantum algorithm for finding the unit group of a number field
involves solving a special case of the hidden subgroup problem over Rr. Let L ⊆ Rr be an
r-dimensional lattice, S a set, and f : Rr → S a function with the property that f(x) = f(y)
if and only if x − y ∈ L. Now let N be a positive integer. A function fN : Rr → S is
said to hide L if an arbitrary point i ∈ Zr

q satisfies the following with inverse polynomial
(in q) probability: for all j ∈ Zr

q, fN(i) = fN(j) if and only if there exists a v ∈ L such

that
∣∣ i−j

N
− v

∣∣ ≤ 1
N

. (This means that there is an element of the coset i−j
N

+ L of Rr whose

absolute value is at most 1
N

.)
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We now show how, given a function fN hiding a lattice L, to construct a basis of the dual
lattice L⊥. We will also need to assume that there exists some M ∈ R such that if B is any
basis matrix for L (i.e. the columns of B form a basis for L), then ‖B‖ · ‖B−1‖ ≤ M , where
‖A‖ is the absolute value of the largest entry of A.

Let Lq = L∩ [0, q)r, and let b·e : R → Z be the function that sends x to the nearest integer
to x; we extend b·e componentwise to Rr. Let us start with a quantum state

1√
qr

∑
k∈Zr

q

|k, fN(k)〉.

We now measure the second component of our quantum state so that it collapses to

1√
|Lq|

∑
v∈L

k0+v∈[0,q)r

k0 fixed

|bN(k0 + v)e〉

for some k0. Since Nk0 ∈ Z, we have bNk0 +Nve = Nk0 + bNve. We will perform a Fourier
sampling, so we may ignore Nk0. Thus we need only concern ourselves with states of the
form

1√
|Lq|

∑
v∈Lq

k0+v∈[0,q)r

k0 fixed

|bNve〉.

Now let M be the length of the longest basis vector of L with respect to some fixed basis. If
we choose q to be sufficiently large, then the set of points within rM of the boundary of the
parallelepiped decreases exponentially with q, so the state above is exponentially near to

1√
|Lq|

∑
v∈Lq

|bNve〉.

We now apply a Fourier transform over Zr
qNk to obtain

1

|Lq|
1√

(qNk)r

∑
i∈Zr

qNk

∑
v∈Lq

ζ
i·bNve
qNk |i〉,

where ζqNk = e2πi/(qNk). Now let w ∈ L⊥ and i = bkqwe. We now let n = dlog ∆e. We

will discard any points for which ij > qNk
n

for some j (where ij is the jth entry of i). We

then have |wj| ≤ N
n

+ 1 for points that we keep; hence choosing N larger will give us more
samples. We can bound the inner product i · bNve in the exponent:

i · bNve = (qkw + δw) · (Nv + εv) = qNk + qk(w · εv) + δw · (Nv + εv),

where −1
2
≤ (δw)j, (εv)j ≤ 1

2
. The first term on the right is congruent to zero modulo qNk

since w ∈ L⊥. For the second term, we have

qk(w · εv)

qNk
≤ r

n
.
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For the last term, if we take k to be sufficiently large, we have

δw · (Nv + εv)

qNk
≤ 1

8
.

Hence the probability of finding an integer vector i ∈ Zr after measurement is at least |Lq |
2(qNk)r .

Since |Lq| ≥ qr

2 det(L)
(see [3]) and |L⊥

N/n| ≥
(N/n)r

2 det(L⊥)
for sufficiently large q and N , we have

|Lq|
2(qNk)r

≥ 1

8(nk)r|L⊥
N/n

.

When this happens, we have

i

qk
− w =

kqw + δw

qk
− w =

δw

qk
,

so i
qk

is within 1
q

of a point in L⊥, so the probability of sampling a point within 1
q

of a point

in L⊥ is at least 1
8(nk)r .

In particular, we have shown the following:

Lemma 7. Let N and q be sufficiently large. Let fN be a function hiding a lattice in Rr. If
we Fourier sample over Zr

qNk and discard points with any coordinate greater than qNk
n

until

we find one that is not discarded, then for the resulting point i ∈ Zr
qNk,

i
kq

is within 1
q

of a

point in L⊥.

5. The Principal Ideal Algorithm

Before we discuss a quantum algorithm for computing the ideal class group, we must tackle
another problem: Given an ideal I of o, determine whether I is a principal ideal, and if it
is, find an α ∈ I such that I = αo. In fact, we will always find some α in this algorithm; we
can then check if I = αo to determine whether I is indeed a principal ideal.

Let x = Log α. If I is a principal ideal, then I = αo = Ix. We define g : Z× Rr → I × R
by (a, y) 7→ f(ax − y), and the discrete version of g is gN : Z × Zr → IK × Z given
by (a, b) 7→ f

(
ax− b

N

)
. Hence we need to compute Iax−b/N and δax−b/N . These can be

computed in quantum polynomial time.
The function gN hides the lattice Λ = {(a, y) ∈ Z × Rr | ax − y ∈ L}, where L is the

logarithmic unit group lattice. A basis of Λ is {(1, x), (0, v1), . . . , (0, vr)}, where v1, . . . , vr

form a basis for L. By the algorithm described above, we can compute a basis for Λ in
quantum polynomial time. (However, the basis given by the algorithm will not necessarily
be the above basis.)

Once we have some basis for Λ, we need to find x. Pick two basis vectors of Λ whose
first coordinates are relatively prime and find a linear combination (1, y) of these two basis
vectors. Then x− y ∈ L, so y = Log(εα) for some ε ∈ o×, and I = αo = εαo. Now reduce
y modulo the basis of L. This gives us the coordinates of x and hence α.

We can carry out this algorithm regardless of whether I is a principal ideal. We then end
up with some α ∈ I. We can then check if I = αo and determine whether I is a principal
ideal. Hence we have the following result:
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Theorem 8. Given an ideal I ⊆ o, we can determine in quantum polynomial time whether
there is some α ∈ I such that I = αo. Furthermore, if such an α exists, we can find one in
quantum polynomial time.

6. The Ideal Class Group

Finally, we are able to compute the ideal class group of a number field K. By this, we
mean that we wish to determine the structure of the group. Since class groups are finite
abelian groups, we can write Cl(K) ∼= Za1 ⊕ Za2 ⊕ · · · ⊕ Za`

.
It is shown in [4] that, assuming the generalized Riemann hypothesis, we can find gen-

erators g1, . . . , gm of Cl(K) in polynomial time. Having done this, we reduce the prob-
lem of determining the structure of Cl(K) to the hidden subgroup problem on Zm as fol-
lows: Define f : Zm → G by (e1, . . . , em) 7→ ge1

1 · · · gem
m . Then the hidden subgroup is

ker(f) = {(e1, . . . , em) | ge1
1 · · · gem

m = 1}.
In fact, we can reduce this to period finding on {1, 2, 3, . . . ,M} for some M that is “not

too big” as follows: By the Minkowski bound (see Theorem 35 of [1]) for the norms of ideals
in ideal classes, we need only look at those integral ideals above Z-ideals up to(

4

π

)r2 d!

dd

√
|∆| ≤

(
4

eπ

)d √
2πd|∆|.

There can only be d ideals above a given Z-ideal, so we can let M be O(d3/2
√
|∆|). We can

now use the ordinary period-finding algorithm on Zd
M , which will compute the periods in

polynomial time. We now apply the following algorithm on each coordinate axis to find the
coordinate periods p:

(1) Set up a superposition

1√
M

M−1∑
x=0

|x, 0〉.

(2) Apply f to the above superposition, leaving us with

1√
M

M−1∑
x=0

|x, f(x)〉 ≈ 1√
M

p−1∑
y=0

M/p−1∑
t=0

|tp + y〉

⊗ |f(y)〉.

(3) Measure the right register above. If we end up with F (c) for 0 ≤ c < p, then our
superposition collapses to √

p

M

M/p−1∑
t=0

|tp + c〉.

(4) Apply a Fourier transform over ZM to get

√
p

M

M−1∑
j=0

ζjc
M

M/p−1∑
t=0

ζjtp
M

 |j〉 ≈ 1
√

p

p−1∑
k=0

ζ
ckM/p
M |kM/p〉.
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(5) Take a measurement of the above superposition. With high probability, we will end
up with a multiple of M/p.

(6) Apply the above steps several times.
(7) Take the greatest common divisor of the above numbers to determine M/p; this then

tells us p.

At this point, we have only to solve the hidden subgroup problem on Zp1 × · · ·×Zpm , and
this can be done in polynomial time.

However, there is a slight problem in that it is not clear how to run the hidden subgroup
algorithm without first finding representatives of the ideal classes. Hence, to run this algo-
rithm, we need to create a superposition of reduced ideals in a given ideal class. To construct
a superposition of reduced ideals with ideal class ge1

1 · · · gem
m , we first compute the o× and get

a basis B for the logarithmic unit group. The basis vectors for Log o× form a parallelepiped.
We now apply fN from §3 and compute the superposition

1√
N r

∑
i∈Zr

N

|i, fN(B × i)〉 =
1√
N

r

∑
i∈Zr

N

|i, IB×i/N , kB×i/N〉.

Then apply the principal ideal algorithm to the second register of the superposition on the
right above with basis B. This process allows us to delete the first register, leaving only the
superposition

1√
N r

∑
i∈Zr

N

|IB×i/N , kB×i/N〉.

We are now in a position to apply the hidden subgroup algorithm for Zp1 × · · · × Zpm in
quantum polynomial time, so we have the following result:

Theorem 9. Assuming the generalized Riemann hypothesis, we can compute the structure
of Cl(K) in quantum polynomial time.
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